
On Measuring the Lattice of Commonalities Among
Several Linked Datasets

Michalis Mountantonakis and Yannis Tzitzikas
Institute of Computer Science, FORTHICS, GREECE

Computer Science Department, University of Crete, GREECE

{mountant | tzitzik} @ics.forth.gr

ABSTRACT
A big number of datasets has been published according to
the principles of Linked Data and this number keeps in-
creasing. Although the ultimate objective is linking and
integration, it is not currently evident how connected the
current LOD cloud is. Measurements (and indexes) that
involve more than two datasets are not available although
they are important: (a) for obtaining complete information
about one particular URI (or set of URIs) with provenance
(b) for aiding dataset discovery and selection, (c) for assess-
ing the connectivity between any set of datasets for quality
checking and for monitoring their evolution over time, (d)
for constructing visualizations that provide more informa-
tive overviews. Since it would be prohibitively expensive
to perform all these measurements in a näıve way, in this
paper we introduce indexes (and their construction algo-
rithms) that can speedup such tasks. In brief, we introduce
(i) a namespace-based prefix index, (ii) a sameAs catalog
for computing the symmetric and transitive closure of the
owl:sameAs relationships encountered in the datasets, (iii)
a semantics-aware element index (that exploits the afore-
mentioned indexes), and finally (iv) two lattice-based incre-
mental algorithms for speeding up the computation of the
intersection of URIs of any set of datasets. We discuss the
speedup obtained by the introduced indexes and algorithms
through comparative results and finally we report measure-
ments about connectivity of the LOD cloud that have never
been carried out so far.

1. INTRODUCTION
The ultimate objective of LOD (Linked Open Data) is

linking and integration, for enabling discovery and integrated
query answering and analysis. However, even some ba-
sic tasks are nowadays challenging due to the scale and
heterogeneity of the datasets: the LODStats website pro-
vides statistics about approximately ten thousand discov-
ered linked datasets until August 20141, and it keeps grow-

1http://stats.lod2.eu

This is a preprint of the article: Michalis Moun-
tantonakis and Yannis Tzitzikas, On Measuring the
Lattice of Commonalities Among Several Linked
Datasets. Accepted for publication in Proceedings
of Very Large Databases Conference (PVLDB) and
will be presented in New Delhi, India 05/09/2016-
09/09/2016.
.

ing. To fill this gap, in this paper we focus on methods, sup-
ported by special indexes, for performing tasks and measure-
ments that involve more than two datasets. Such indexes
and measurements are important: (a) for obtaining com-
plete information about one particular URI (or set of URIs)
with their provenance, (b) for obtaining measurements that
are useful for dataset discovery and selection [6, 17, 18], (c)
for assessing the connectivity between any set of datasets for
quality checking and for monitoring their evolution over time
[14], (d) for constructing visualizations [3] that provide more
informative overviews and could also aid dataset discovery.
Overall, the aforementioned tasks can assist data scientists
since according to several studies they currently spend most
of their time in collecting and preparing unruly digital data.

An example of task (a) follows. Suppose that one user
or an application wants to find all the available data asso-
ciated with “http://www.dbpedia.org/Aristotle”, including
URIs being owl:sameAs with this entity (i.e., object coref-
erence), coming from multiple sources. This is not currently
possible. With the proposed approach this is possible, and
one can also get the provenance of the returned triples. This
task is not trivial since the owl:sameAs relationships model
an equivalence relation and therefore its transitive closure
has to be computed and this presupposes knowledge of all
datasets. Dataset discovery and visualization, i.e. tasks (b)
and (d), are emerging challenges for the web of data; for
instance according to [8] “Being able to discover data from
other sources, to rapidly integrate that data with one’s own,
and to perform simple analyses, often by eye (via visualiza-
tions), can lead to insights that can be important assets.”
Currently the community uses catalogs that contain some
very basic metadata, and diagrams like the Linking Open
Data cloud diagram2, as well as LargeRDFBench3 (an ex-
cerpt is shown in Figure 1). These diagrams illustrate how
many links exist between pairs of datasets, however they do
not make evident if three or more datasets share any URI
or Literal! To fill this gap in this paper we show how we
can make efficiently measurements that involve more than
two datasets. The results can be visualized as Lattices, like
that of Figure 2 which shows the lattice of the four datasets
of Figure 1. From this lattice one can see the number of
common real world objects in the triads of datasets, e.g. it
is evident that the triad of DBpedia, GeoNames and NYT
shares 1,517 real world objects, and there are 220 real world
objects shared in all four datasets. Instead, the classical vi-
sualizations of the LOD cloud, like that of Figure 1, stop at

2http://lod-cloud.net/
3http://github.com/AKSW/LargeRDFBench



Figure 1: LargeRDFBench Cross Domain Datasets

Figure 2: Lattice of four datasets showing the com-
mon Real world Objects

the level of pairs. As another example in the lower right cor-
ner of Figure 3 we show a visualization of 287 RDF datasets
where each dataset is illustrated as a building and bridges
are used to illustrate owl:sameAs relationships between two
datasets where the volume of each bridge is equal to the
number of such relationships. If the transitive closure is
not computed then the visualization will suffer for miss-
ing bridges (i.e. missing connections between datasets) and
smaller in size bridges. As dataset discovery is concerned,
i.e. task (b), apart from visualization the proposed mea-
surements can be directly used for answering queries like
“find the K datasets that are more connected to a partic-
ular dataset”. It is also important to be able to retrieve
information about the same real world entity from several
sources in order to verify or clean that information and even-
tually produce a more accurate dataset or “widen” the infor-
mation for a URI. Technically, this reduces to constructing
a dataset with high “pluralism factor”, i.e., a consolidated
dataset where the number of datasets that provide infor-
mation about each entity is high. An indicative query for
such a case follows: “find the K datasets that maximize the
pluralism factor of the entities of a particular dataset”.
As regards RDF data quality, i.e. task (c), according to [4]

is important for determining the subset of the available data
which are trustworthy to use in a Linked Data application
while [25] categorizes quality metrics in various categories.
The major dimension in which our work (common real world
objects) belongs to is mainly interlinking and secondarily
relevancy.

However, it is very expensive to perform all these mea-
surements straightforwardly, because there are numerous
datasets and some of them are quite big. Moreover, the
possible combinations of datasets is exponential in number.
To tackle this challenge, we introduce a set of indexes (and
their construction algorithms) for speeding up such mea-
surements. We show that with the proposed method it is
feasible to perform such measurements even with one ma-
chine! More than one machines could be included for further
speedup but this is not necessary since the task of measure-
ment is not a daily activity. Nevertheless, the introduced
method and its experimental analysis paves the way for ef-
fectively parallelizing the task. In brief in this paper:
• we introduce a namespace-based prefix index for speeding
up the computation of the metrics,
• we introduce a sameAs catalog for computing the symmet-
ric and transitive closure of the owl:sameAs relationships
encountered in the datasets (the algorithm is based on in-
cremental signatures allowing each pair of URIs to be read
only once),
• we introduce a semantics-aware element index (that ex-
ploits the previous two indexes), and two lattice-based in-
cremental algorithms for speeding up the computation of
the intersection of URIs of any set of datasets (the lattice
can be also used for the visualization of commonalities if the
number of datasets is low, and as a navigation mechanism
if the number of datasets is high),
• we measure the speedup obtained by the proposed indexes
and algorithms (just indicatively they enable computing the
sameAs closure of 300 datasets in 45 seconds and the lattice
of measurements of all possible sets of datasets that share
more than 30 URIs in 3.5 minutes and we report connec-
tivity measurements for a subset of the current LOD that
comprises 300 datasets.

We have published the measurements in datahub.io4 using
VoID [12] and VoIDWH [14] vocabularies, while http://

www.ics.forth.gr/isl/LODsyndesis/ offers a set of query
services for dataset discovery and global entity lookup, plus
a link to a prototype that exploits these measurements and
provides an interactive 3D visualization.

The rest of this paper is organized as follows: §2 pro-
vides the required background, and describes related work,
§3 states the problem, introduces the indexes and their con-
struction algorithms, and §4 shows how to compute the met-
rics for any set of datasets. §5 reports measurements and
experimental results over a big number of datasets of the
LOD cloud, and discusses the speedup obtained with the
introduced indexes. Finally, §6 concludes the paper and
identifies possible directions for future research.

2. BACKGROUND AND RELATED WORK

2.1 Background
The Resource Description Framework (RDF) [13] is a graph-

based data model for linked data interchanging on the web.
RDF uses Triples in order to relate Uniform Resource Iden-
tifiers (URIs) or anonymous resources (blank nodes) where
both of them denote a Resource, with other URIs, blank
nodes or constants (Literals). Let U be the set of all URIs,
B the set of all blank nodes, and L the set of all Literals.
A triple is any element of T = (U ∪ B) × U × (U ∪ L ∪ B),
4http://datahub.io/dataset/connectivity-of-lod-datasets



while an RDF graph (or dataset) is any finite subset of T .
Linked Data refers to a method of publishing structured
data, so that it can be interlinked and become more use-
ful through semantic queries, founded on HTTP, RDF and
URIs. The linking of datasets is essentially signified by the
existence of common URIs, referring to schema elements (de-
fined through RDF Schema5 and OWL6), or data elements.
Since we focus on the second, hereafter we will consider only
URIs that are either subjects or objects of triples whereas we
will ignore properties, since they are schema elements. How-
ever, we do consider owl:sameAs-triples, where owl:sameAs

is a built-in OWL property for linking an individual to an
individual meaning that both are equivalent i.e. they refer
to the same real world object.

2.2 Related Work
Measurements in LOD Scale. The authors of [20]

indexed thirty eight billion triples from over six hundred
thousand documents, for cleaning them and providing statis-
tics about the cleaned data. A key difference in our ap-
proach is that we take into account the semantics, specifi-
cally the owl:sameAs relationships. Moreover, our measure-
ments concern connectivity, while [20] focuses on other as-
pects (like validity of documents) and they do not compute
common URIs between three or more datasets. The authors
of [15] created a portal for link discovery which contains
mappings between pairs of 462 datasets. In comparison to
our approach, they take into account only pairs of datasets
and they do not index the URIs.
The authors in [21] focused on crawling a large number of

datasets, and categorizing them into eight different domains
(such as publications, geographical, etc.) and they provided
measurements like the degree distribution of each dataset
(how many datasets link to a specific dataset). Another
work that analyzes a large number of linked datasets is LOD-
Stats [2] which provides useful statistics about each docu-
ment such as the number of triples, number of owl:sameAs
links and so forth. Comparing our work with the previous
two approaches, we focus on connectivity of datasets URIs
(meaning that we provide more refined measurements) and
we measure the connectivity among two or more datasets. In
[14] the authors performed measurements among more than
two datasets but for small in number datasets (7 in num-
ber). The method that was used for performing these mea-
surements (plain SPARQL queries) cannot be scaled up to
large in number datasets. Finally, the work [23] focuses only
on features of the semantic web schemas, not on datasets.
Indexes for search and queries. The work described in

[9] proposes an object consolidation algorithm which anal-
yses inverse functional properties in order to identify and
merge equivalent instances in an RDF dataset. An index
for the owl:sameAs relationships is adopted in order to find
all the URIs for a real world object. This index is used in
YARS2 [7], a federated repository that queries linked data
coming from different datasets. The system uses a number
of indexes, such as a keyword index and a complete index
on quads in order to allow direct lookups on multiple di-
mensions without requiring join. YARS2 is part of the Se-
mantic Web Search Engine (SWSE) [10] which aims at pro-
viding an end-to-end entity-centric system for collecting, in-
dexing, querying, navigating, and mining graph-structured

5http://www.w3.org/TR/rdf-schema/
6http://www.w3.org/TR/owl2-overview/

Web data. Another system is Swoogle [5] which is a crawler-
based indexing and retrieval system for the semantic web. It
analyzes a number of documents and provides an index for
URIs and character N-Grams for answering user’s queries
or compute the similarity among a set of documents. A
lookup index over resources crawled on the Semantic Web
is presented in [24]. In particular, the authors construct an
index for finding for each URI the documents it occurs, a
keyword index and an index that allows lookup of resources
with different URIs identifying the same real world object.
The work [16] describes an engine for scalable management
of RDF data, called RDF-3X which is an implementation of
SPARQL [19]. This system maintains indexes for all possi-
ble permutations of an RDF triple members (s p o) in six
separate indexes while only the changes between triples in-
stead of full triples are stored. In comparison to our work, we
mainly focus on finding how connected are the different sub-
sets of the LOD Cloud and how to perform faster such mea-
surements, while the focus of aforementioned approaches is
not on speeding up measurements but on answering faster
different types of user queries.

3. INDEXES FOR MEASURING THE CON
NECTIVITY OF RDF DATASETS

3.1 Problem Statement
Let D = {D1, . . . , Dn} be a set of RDF datasets (or

sources). For each Di we shall use triples(Di) to denote
its triples (triples(Di) ⊆ T ), and Ui to denote the URIs
that occur as subjects or objects in these triples. As run-
ning example we will use four datasets each containing six
URIs as shown in Figure 3 (upper-left corner).
Common URIs in Datasets.
Let P(D) denote the powerset of D, comprising elements
each being a subset of D, i.e. a set of datasets. Our objective
is to find the common URIs in every element of P(D),
meaning that for each set of datasets B ∈ P(D) we want to
compute cu(B) defined as:

cu(B) = ∩Di∈B Ui (1)

Datasets containing a particular URI.
Another objective is to find all datasets that contain infor-
mation about a particular URI u, i.e. to compute

dsets(u) = {Di ∈ D | u ∈ Ui} (2)

Considering Equivalence Relationships.
So far we have ignored the owl:sameAs relationships. Below
we shall see how to semantically complete the previous def-
initions. Let sm(Di) be the owl:sameAs relationships of a
dataset Di, i.e.:

sm(Di) = {(u, u′) | (u, owl:sameAs, u′) ∈ triples(Di)} (3)

If B is a set of datasets, i.e. B ∈ P(D), we will denote
with SM(B) the union of the owl:sameAs relationships in
the datasets of B, i.e. SM(B) = ∪Di∈B sm(Di). Notice
that our running example includes five owl:sameAs relation-
ships, shown in Figure 3 (upper-right). If R denotes a bi-
nary relation, we shall use C(R) to denote the transitive and
symmetric closure of R. Consequently, C(sm(Di)) stands
for the transitive and symmetric closure of sm(Di), while
C(SM(B)) is the transitive and symmetric closure of the
owl:sameAs relationships in all datasets in B. The number
of real world objects (in abbreviation rwo) in a dataset Di



is the number of classes of equivalence of C(sm(Di)), plus
those URIs of Ui that do not occur in C(sm(Di) (in order
not to count some URIs more than once), e.g. if Utemp =
{u1, u2, u3, u4, u5} and there are two owl:sameAs relation-
ships, u1∼u3 and u1∼u4, then their closure derives the fol-
lowing classes of equivalence Utemp/∼ =

{
{u1, u3, u4}, {u2},

{u5}
}
. The number of real world objects in a set of datasets

B is defined analogously.
We can now define the equivalent URIs (considering all

datasets in B) of a URI u (and of a set of URIs U) as:

Equiv(u,B) = { u′ | (u, u′) ∈ C(SM(B))} (4)

Equiv(U,B) = ∪u∈UEquiv(u,B) (5)

We are now ready to “semantically complete” the defini-
tions (1) and (2):
Datasets containing a particular (or equivalent) URI.
The set of datasets that contain information about u (or a
URI equivalent to u) is defined as:

dsets∼(u) = {Di ∈ D | ({u} ∪ Equiv(u,D)) ∩ Ui ̸= ∅} (6)

Obviously, it holds dsets(u) ⊆ dsets∼(u).
Common (or equivalent) URIs in Datasets.
The common or equivalent URIs in the datasets in B are
defined as:

cu∼(B) = { u ∈ U | dsets∼(u) ⊇ B} (7)

Obviously it holds cu(B) ⊆ cu∼(B). Now the rwo that are
in common in the datasets in B are the classes of equivalence
of cu∼(B), i.e. the set cu∼(B)/∼. Therefore we define the
number of common real world objects in the datasets of B
as:

co∼(B) = |cu∼(B)/∼| (8)

In a nutshell, in this paper we focus on how to compute
efficiently formulas 6 and 8, for any u ∈ U and B ⊆ D
respectively.

3.2 The Proposed Indexes
Figure 3 illustrates the proposed indexes over our running

example. Let U = U1∪ . . .∪Un (n = 4 in our example). We
propose three indexes:
• PrefixIndex: It is a function pi : Pre(D) →P(D) where
Pre(D) is the set of prefixes of the datasets in D, i.e. Pre(D)
= { pre(u) | u ∈ Ui, Di ∈ D}, e.g. see step 1 of Fig. 3.
• SameAsCat: For each u that participates to SM(D) this
catalog stores a unique id. All URIs in the class of equiva-
lence of u are getting the same id. Let SID denotes this set
of identifiers. The SameAsCat is essentially a binary relation
⊆ U × SID, e.g. see step 2 of Fig. 3.
• ElementIndex: For each element of U ∪ SID this index
stores the datasets where it appears, i.e. it is a function
ei : U ∪ SID → P(D) where ei(u) = dsets∼(u), e.g. see
step 3 of Fig. 3.
The rationale and the construction method for each one is
given below.

3.3 Prefix Index
Rationale: Most data providers publish their data using
prefixes that indicate their company or university (e.g., DB-
pedia URIs starts with prefix http://dbpedia.org).
A PrefixIndex can greatly reduce the cost of finding com-
mon URIs. First, there is no need to compare URIs contain-
ing different namespaces. Second, if a prefix p exists in one

dataset only, it is not possible for the URIs starting with p
to be found in another dataset.
Construction Method: For getting the prefixes of a Di

stored in a triplestore, one can either submit a SPARQL
query or scan each Ui once. We also count the frequency
of each prefix in the dataset. If nm is a namespace, pi(nm)
is the set of ids of the datasets that contain it. This set is
stored in ascending order with respect to the frequency, e.g.
in our running example we can see that for the prefix dbp
the dataset DBpedia contains the most URIs, consequently,
the ID of this source (i.e. 2) is in the last position of pi(dbp).
This ordering is beneficial for reducing the ASK queries as
we shall see later in §3.5.

Moreover, PrefixIndex enables a fast method for find-
ing the upper bound of |dsets(u)| for a particular u (since
dsets(u) ⊆ pi(pre(u))), e.g. in our running example a URI
starting with prefix en wiki can be possibly found in four
datasets, because all four datasets contain this prefix. How-
ever, a URI with prefix yg can appear only in one dataset
since this prefix appears only in Yago.

3.4 SameAs Catalog
Rationale: It is required for formulas 6, 7 and 8 as ex-
plained in §3.1.
Construction Method: We introduce a signature-based
algorithm where each class of equivalence will get a signature
(id) and the signature is constructed incrementally during
the computation. After the completion of the algorithm,
all URIs that belong to the same class of equivalence will
have the same identifier. The algorithm assigns to each pair
(u, u′) ∈ SM(B) an identifier according to the following
rules:

1. If both URIs have not an identifier, a new identifier is
assigned to both of them. E.g. Table 1 contains two
classes of equivalence and four URIs. In the next step,
a new owl:sameAs pair containing two URIs without
identifier is inserted resulting to a new class of equiv-
alence which is shown in Table 2.

2. If u has an identifier while u′ has not, u′ gets the same
identifier as u. Table 3 shows such an example where
a new URI (u7) is assigned the identifier of an existing
one (u3).

3. If u′ has an identifier while u has not, u gets the same
identifier as u′.

4. If both URIs have the same identifier, the algorithm
continues.

5. If the URIs have a different identifier, these identifiers
are concatenated to the lowest identifier. In case of
Table 4, both URIs exist in the SameAsCat and have
a different identifier. For this reason, the classes of
equivalence of these identifiers are merged.

We can say that the algorithm constructs incrementally
chains of owl:sameAs URIs where each URI becomes a mem-
ber of a chain if and only if there is a owl:sameAs relation-
ship with a URI which is already member of this chain. Its
correctness is based on the following proposition.

Prop. 1. If (a, b) ∈ SM(B) and (a, c) ∈ SM(B) then
(b, c) ∈ C(SM(B)).

Proof. Firstly, (b, a) ∈ C(SM(B)) because of symmetry.
By taking the transitive closure of (b, a), (a, c), we get that
(b, c) ∈ C(SM(B)).



Figure 3: Running Example

Its benefit is that it needs one pass for each owl:sameAs

pair in order to compute the transitive and symmetric clo-
sure, and its time complexity is O(n), where n is the number
of owl:sameAs pairs. However, it is needed to keep in mem-

ory chains of owl:sameAs in order to connect such chains
with new owl:sameAs relationships. Indeed, the space com-
plexity is O(m), where m is the number of unique URIs that
occur in owl:sameAs pairs, since in the worst case each URI



Table 1: Classes of
Equivalence

ID URIs

1 u1, u2

2 u3, u4

Table 2: Insert u5

owl:sameAs u6

ID URIs

1 u1, u2

2 u3, u4

3 u5,u6

Table 3: Insert u3

owl:sameAs u7

ID URIs

1 u1, u2

2 u3, u4,u7

3 u5, u6

Table 4: Insert u1

owl:sameAs u3

ID URIs

1 u1, u2,u3,u4,u7

2 u3, u4, u7

3 u5, u6

is saved both in SameAsCat and in classes of equivalence until
the end of the algorithm. Regarding the size of the catalog
we store for each URI a distinct arbitrary number. Since
each real world object is represented by exactly one iden-
tifier, the number of unique identifiers in the SameAsCat is
equal to the number of unique real world objects of SM(B).
In our running example, the owl:sameAs catalog is shown
in Figure 3 (step 2). In our implementation we use two
HashMaps: the first for each URI (key) keeps its signature
(value), while the second for each signature (key) keeps the
set of URIs that have this signature (value). In case of
executing rule 5, the URIs of the two signatures of the sec-
ond HashMap are merged in the lowest signature, while the
entry of the highest signature is removed. The signature
of URIs which previously had the highest signature (of the
two) should also be updated in the first HashMap.
Alternatively, one can use Tarjan’s connected components

(CC) algorithm [22] that uses Depth-First Search (DFS).
The input of CC algorithm is a graph which should have
been created before running the algorithm. For this rea-
son, we have to read all the owl:sameAs pairs once O(n)
(i.e., each owl:sameAs represents an edge) in order to con-
struct the graph. The time complexity of CC algorithm is
O(m + n). Regarding the space, the creation of graph re-
quires space n + 2m because the graph is undirected and
we should create bidirectional edges while the CC algorithm
needs space O(m), since in the worst case it needs to keep
all the nodes in DFS stack (i.e., unique URIs). However, the
graph should be loaded in memory in order to run the CC al-
gorithm, thereby the total space needed is O(n+m). In §5.1
we compare the execution time of the two aforementioned
approaches.

3.5 Element Index
Rationale: ElementIndex is essentially a function ei : U ∪
SID → P(D) where ei(u) = dsets∼(u) which is needed
for finding fast the datasets to which a URI appears. To
reduce its space we can avoid storing URIs that occur in
only one dataset and this information can be obtained by
the PrefixIndex. We can identify two basic candidate data
structures for this index: (1) a bit array of length |D| that
indicates the datasets to which each element belongs (each
position in the bit string corresponds to a specific dataset),
or (2) an IR-like inverted index [26], in which for each URI
store the ID of the datasets (a distinct arbitrary number). A

bitmap index keeps for each element of U∪SID a bit array of
length |D|, therefore its total size is |U ∪SID| ∗ |D| bits. An
inverted index for each element of U ∪ SID keeps a posting
list of dataset identifiers. If ap is the average size of the
posting lists, then the total size is |U∪SID|∗ap∗log |D| bits
(where log |D| corresponds to the required bits for encoding
|D| distinct identifiers). If we solve the inequality Bitmap ≤
InvertedIndex, we get that the size of bitmap is smaller

than the size of inverted index when ap > |D|
log |D|

.

Construction Method: Algorithm 1 creates the element
index while considering the aforementioned indexes (this al-
gorithm can be used for both types of data structures). With
Left(r) we denote the set of elements that occur in the left
side of a binary relation or function r, and with [u] the class
of equivalence of u. Figure 3 (middle-right) shows the re-
sulted index of our running example. The combination of
the first and the second column of the element index repre-
sents the inverted index of the running example, while the
combination of the first and the third represents the element
index with a bit array of length n (instead of datasets IDs).

Returning to Algorithm 1, at first, if a URI u (of a dataset
Di) belongs to the SameAsCat (assuming that each class of
equivalence involves URIs that occur in different datasets)
an entry is added to the element index comprising the iden-
tifier of u (taken by the SameAsCat) and the dataset ID
of Di (lines 3-5). For instance, URI yq:Aristotle exists in
SameAsCat (see Figure 3). Thereby, its identifier and dataset
ID is added to the element index. When the identifier al-
ready exists in the element index, the corresponding entry
is updated by adding only the dataset ID (line 7). When u
does not exist in the SameAsCat, the next step is to check if
u already belongs to the element index (because it was en-
countered previously). Then the index entry of u is updated
by adding the dataset ID (lines 8-9).

The last step (if the two previous failed) corresponds to
URIs that neither belongs to Left(SameAsCat) nor to
Left(ei). In this step, we exploit PrefixIndex by using the
function pi for taking the datasets containing the namespace
nm of u (line 12). One approach is to add ei([uj ]) ← {i}
if the nm of uj exists in two or more datasets. In this way,
at the end the ei could contain URIs that occur in one Di.
For this reason, such URIs should be deleted at the end (an
extra step is required). Alternatively, one can perform an
extra check for ensuring that a URI exists in at least two
datasets and this is described in lines 12-17.

Let ask(u,Dk) = ”ASK Dk { u ?p ?o } ∪ { ?s ?p u }”
be an ASK query for a URI u and answer(ask(u,Dk)) a
function which returns either true or false. At first, we find
which datasets contain URIs starting with the namespace
nm. In particular, we read the datasets IDs that pi(nm)
returned in reverse order and we send ASK queries only to
a dataset Dk that contains more URIs starting with nm
(starting from the Dk with the most URIs for nm). In
case of answer(ask(u,Dk)) = true, a new entry is added
to ei which is composed of u and the IDs i and k. For in-
stance, the prefix en wiki can be found in all datasets. How-
ever, for the URI en wiki:san diego of dataset NYT (with
ID 1), we do not send a query since NYT dataset con-
tains the most URIs for en wiki prefix. For the same URI
en wiki:san diego of dataset Yago (with ID 3) the first step
is to send an ASK query to NYT source. In this case
answer(ask(en wiki:san diego,NY T )) = true, therefore we



create a new entry to ei for this URI and we add both the IDs
of NYT and Yago. On the contrary, for URIs starting with
prefixes that exist only in one dataset (e.g., yg:Socrates), the
algorithm continues without sending any ASK query (see
§3.3). The approach with the ASK queries is the only one
that can be used if the data cannot fit in memory. On the
contrary, when the required memory space is available it is
faster to keep the URIs until the end (and then remove those
that do not occur in ≥ 2 datasets).

Algorithm 1 Element Index Creation

Input: A set of URIs Ui for each dataset, the SameAsCat

and the PrefixIndex

Output: An element index ei of real world objects that
exist in ≥ 2 datasets

1: for all Di ∈ D do
2: for all uj ∈ Ui do
3: if uj ∈ Left(SameAsCat) then
4: if [uj ] /∈ Left(ei) then ◃ signature of uj

5: ei([uj ])← {i}
6: else
7: ei([uj ])← ei([uj ]) ∪ {i}
8: else if uj ∈ Left(ei) then
9: ei(uj)← ei(uj) ∪ {i}
10: else if uj /∈ Left(SameAsCat) ∪ Left(ei) then
11: nm← namespace(uj)
12: for all Dk ∈ pi(nm) in reverse order do
13: if Dk = Di then
14: break
15: if answer(ask(uj , Dk)) = true then
16: ei(uj)← {i, k}
17: break
18: return ei

Algorithm 1 reads each u ∈ Ui once for allDi ∈ D, thereby
the complexity is O(y) where y is the sum of |Ui|. Alterna-
tively, one can use a straightforward method (sf) that finds
the intersections of all subsets in P(D). In a straightfor-
ward method, the URIs are sorted lexicographically in order
to perform binary searches for finding the common URIs of
any subset. In particular, for each subset B ∈ P(D), for all
the URIs (e.g., U1) of the smallest dataset (regarding the
size of URIs) one or more binary searches are performed,
starting from the second smallest dataset (e.g., U2) and so
forth. Regarding the complexity, in case of having n datasets
inside the subset B, in the worst case we should perform for
each URI in U1 a binary search for each of the n−1 remain-
ing datasets. For all subsets of D the complexity becomes

exponential, since there exists 2|D| possible subsets, thereby

the cost is O(2|D|n logn). In §5.1, we show experiments for
comparing the execution time of the index approaches and
the straightforward method.
Ordering the Prefix Index for Reducing the ASK
Queries. In Algorithm 1 we send ASK queries only to the
datasets containing more URIs than Di for prefix p. Here,
we describe a) how different combinations of the dataset IDs
sequence in prefix index produce different numbers of ASK
queries and b) why the proposed ordering reduces the num-
ber of ASK queries. Let Up = {u ∈ Ui | namespace(u) =
p } and U ′

i = Ui ∩ Up. Let pos return the dataset ID of
specific position for a prefix p list, i.e. it is a function

Table 5: Frequency
for a prefix p

U ′
i Freq. of p

U ′
1 1,000,000

U ′
2 5,000

U ′
3 10,000

Table 6: ASKs per combi-
nation for the worst case

Position 0,1,2 ASKs

D1,D2,D3 2,005,000
D1,D3,D2 2,010,000
D2,D1,D3 1,010,000
D2,D3,D1 20,000
D3,D1,D2 1,020,000
D3,D2,D1 25,000

pos : Z → Z>0 and let n be the number of the differ-
ent datasets having |U ′

i | > 0. Suppose that we store the
dataset IDs for each prefix randomly. It means that we do
not take into account the frequency of the URIs of a prefix
in each dataset. In the example of Table 5 we can see the
size of each U ′

i for a prefix p. Table 6 shows the number
of ASK queries for the worst case in which for each pair
⟨Di, Dj⟩ we should check ∀ ui s.t. ui ∈ U ′

i the result of
answer(ask(ui, Dj)). The formula that we use in Table 6
follows: Asks = |U ′

pos(0)| ∗ (n− 1)+ |U ′
pos(1)| ∗ (n− 2)+ ...+

|U ′
pos(n−1)| ∗ 0.
Concerning the sequence ⟨D1, D2, D3⟩, in the worst case

the number of ASK queries is: Asks = |U ′
1| ∗ 2 + |U ′

2| =
2, 005, 000 ASK queries. In particular, we send 2 ∗ |U ′

1| ASK
queries in order to check for each URI u1, where u1 ∈ U ′

1,
if answer(ask(u1, D2)) = true or answer(ask(u1, D3)) =
true. Then, for each u2 we send |U ′

2| Ask queries (e.g., for
each u2 ∈ U ′

2 we check if answer(ask(u2, D3)) = true).
Concerning the sequence ⟨D2, D3, D1⟩, in the worst case the
number of ASK queries is: Asks = |U ′

2| ∗ 2 + |U ′
3| = 20, 000

ASK queries. In the aforementioned sequence the datasets
are in ascending order w.r.t. the frequency of URIs starting
with p in Di (the order that we follow in PrefixIndex).

Additionally, the fact that we start to send ASK queries
for a URI containing a prefix p from the dataset with the
most URIs starting with p makes it more possible the answer
of first ASK query to be true. In fact, the dataset contain-
ing the most URIs for a prefix is usually the dataset of the
publisher of this prefix’ URIs.

4. THE LATTICE OF MEASUREMENTS
After the creation of the element index, we can compute

the commonalities between any subset of datasets in D.
For (a) speeding up the computation of the intersections
of URIs and (b) visualizing these measurements (for aiding
understanding), we propose a method that is based on a
lattice (specifically on a meet-semilattice). If the number
of datasets is not high, the lattice can be shown entirely,
otherwise (i.e. if the number of datasets is high) it can be
used as a navigation mechanism, e.g. the user could navi-
gate from the desired dataset (at the bottom layer) upwards,
as a means for dataset discovery. Specifically, we propose
constructing and showing the measurements in a way that
resembles the Hasse Diagram of the poset, partially ordered
set, (P(D),⊆). The lattice can be represented as a Directed
Acyclic Graph G = (V,E) where the edges point towards the
direct supersets, i.e. each directed edge starts from a set B
and points to a superset B′, where B ⊂ B′ and |B| = |B′|−1
(i.e., there exists exactly one element of B′ which is not an
element of B). The empty set is the unique source node
of G (i.e., node with zero in-degree) and the set containing
all the datasets (i.e. D) is the unique sink node of G (i.e.,



node with zero out-degree). A lattice of D datasets contains
|D|+1 levels while the value of each level k (0 ≤ k ≤ |D|)
indicates the number of datasets that each subset of level
k contains (e.g., level 2 corresponds to pairs). For comput-
ing the measurements that correspond to each node (of the

2|D| nodes), one could follow a straightforward approach,
i.e. scan the entire element index once per each node, but
that would require exponential in number scans, hence pro-
hibitively expensive for high number of datasets. To tackle
this problem, below we introduce (i) a top-down and (ii)
a bottom-up lattice-based incremental algorithm that both
require only one scan of the element index for computing
the commonalities between any set of datasets. We should
stress that it is not required to compute the entire lattice,
one can use the proposed approach for computing only the
desired part of the lattice and its incremental nature can
offer significant speedups (as we shall see in §5.2).

4.1 Making the Measurements of the Lattice
Incrementally

For a subset B, let directCount(B) denote its frequency
in the element index, i.e.
directCount(B) = | { u ∈ Left(ei) | ei(u) = B } |.
We can compute these counters by scanning the element in-
dex once (in our running example, the outcome is shown in
Step 4 of Figure 3). Now let Up(B) = {B′ ∈ P(D) | B ⊆
B′, directCount(B′) > 0}. The key point is that for a subset
B, the sum of the directCount of Up(B) gives the intersec-
tion of the real world objects of the datasets in B, i.e.

co∼(B) =
∑

B′∈Up(B)

directCount(B′) (9)

because the URIs belonging to the intersection of a superset
certainly belong to the intersection of each of the subsets of
this superset, as stated in the following proposition.

Prop. 2. Let F and F ′ be two families of sets. If F ⊆ F ′

then ∩S
S∈F ′

⊆ ∩S
S∈F

. (The proof can be found in [11].)

Now we will describe the two different ways for computing
the entire lattice or a part of it.
The top-down approach starts from the maximum level

having at least one subset B where B ∈ Left(directCount).
At first, we add B to Up(B) if B ∈ Left(directCount) and
then we compute co∼(B). Afterwards, the list Up(B) of the
current node is “transferred” to each subset B′ of the lower
level since B′ ⊆ B implies Up(B) ⊆ Up(B′). For exam-
ple, if 1110 ∈ Up(1110) then surely 1110 ∈ Up(1100). After
finishing with the nodes of the current level, we continue
with the nodes of the previous level, and so on. As an ex-
ample, in Figure 4 the second (middle) box of each node
indicates the order by which it is visited. As we can see,
we start from the maximum level (i.e., level 4) and we con-
tinue with the triads and finally with the pairs. The dashed
edges represent the edges that are created by the algorithm.
In our running example (see Figure 3), we can observe in
Step 6 the final intersection value of each node and all the
Up(B) for each subset B. For instance, we observe that the
Up(1001) are the subsets 1111, 1011 and 1001. If we sum
their directCount, we find co∼(1001), which is 5.
The time complexity of this algorithm is O(|V | + |E|),

where |V | is the number of vertices (|V | = 2|D|) and |E| the
number of edges, and it holds that |E| = |D| ∗ 2(|D|−1).

Figure 4: Lattice Traversal (BFS and DFS)

As regards memory requirements, this algorithm will create
all edges for each node and it has to keep in memory each
subset B (and Up(B)) of a specific level k (the number of

nodes Vk of level k is given by Vk =
(|D|

k

)
) because the

traversal is BFS (breadth-first search).
In the bottom-up approach we first assign the Up(B) to

each subset B of level two (the level that contains nodes of
each pair of datasets) and we continue upwards. However,
and in order to reduce the main memory requirements, in-
stead of covering entirely each level before going to its up-
per level, we follow a kind of Depth-First Search (DFS).
We will call it DFS although we could also call it “Height
First Search” since it starts from the leaves and goes to-
wards the root. The visiting order of the nodes of the exam-
ple of Figure 4 is shown in the third (bottom) box of each
node. Again, the co∼(B) of a node is computed by adding
the directCount of Up(B). However, a part of the list (or
the whole list) Up(B) of the current node is “transferred”
to each superset B′ (where B′ ⊃ B) of the next level that
has not been visited yet. In this way, we visit each node
once and this lead to a total cost of one incoming edge per

node, i.e. |V | edges (|V | = 2|D| for the whole lattice) in-

stead of the |D| ∗ 2(|D|−1) edges of the top-down approach.
The time complexity of this algorithm is O(|V |), where |V |
is the number of vertices. Indeed, it passes once from each
node and it creates one edge per node (|V |+ |V |). Moreover,
it needs space O(d) where d is the maximum depth of the
lattice (in our case d is the maximum level having at least
one B where co∼(B) > 0). However, we should take into
account the cost of checking which of the elements of Up(B)
belong to Up(B′) since we cannot transfer all the Up(B) to
B′ (because B′ ⊇ B ̸⇒ Up(B) ⊆ Up(B′)), e.g. in our run-
ning example 1110 ∈ Up(0110) but 1110 /∈ Up(0111).
Cost analysis. If Bi in Left(directCount), let bits1(Bi) be
the number of 1’s in Bi (e.g. bits1(1110) is 3), and obviously
2 ≤ bits1(Bi) ≤ |D|. Each such Bi belongs to the Up(B)

of 2bits1(Bi) − 1 subsets (we subtract 1 for the empty set).

Since for each such Bi, we have to perform 2bits(Bi) checks
(i.e., one check when traversing the list of directCount nodes

and |2bits1(Bi) − 1| checks when traversing the lattice), it
follows that the total cost of such checks is checkCost =
|
∑C

i=1 2
bits1(Bi)|, where C is the number of nodes occurring

in Left(directCount), i.e. C = |{ei(u) | u ∈ U ∪ SID}|.
It is essentially the cardinality of the codomain of ei and ob-
viously, C ≤ |U ∪ SID| (as we shall see in the experiments
C ≃ 0.1% of |U ∪ SID|).



Comparison. Both algorithms pass from all nodes having
co∼(B) > 0. The top-down approach requires creating |D|/2
times more edges, however the bottom-up approach has the
additional checkCost.

Prop. 3. If the frequency of URIs to datasets follows a
power-law distribution (specifically if we group and rank in
descending order the directCount nodes according to their
number of bits, and assume that the number of nodes of the
n-th category (2 ≤ n ≤ |D|) is given by f(n) = k∗(m/2)n−2,
where k is the number of such nodes having bits1(B) = 2,
m/2 is the reduction factor (1 < m ≤ 2), and assume k =
|D2|/4), then the bottom-up approach is more efficient than

the top-down if |D|2 ∗ m|D|−1−1
m−1

< (|D| − 2) ∗ 2|D−1|.

Proof sketch: The bottom-up approach is better than the
top-down when checkCost < extra edges of the top-down. If

we subtract the edges of the bottom-up approach (i.e., 2|D|)

from the edges of the top-down approach (i.e., |D| ∗ 2|D|−1)

we get (|D| − 2) ∗ 2(|D|−1). Now let calculate checkCost
for the assumed power-law distribution. The n-th category
(each node Bn of the n-th category has bits1(Bn) = n) of

nodes contains k ∗ (m/2)|bits1(Bn)|−2 nodes and we need

k∗(m/2)|bits1(Bn)|−2∗2|bits1(Bn)| checks. The corresponding

sum (i.e., of checks) leads to checkCost = 4k ∗ m|D|−1−1
m−1

.

By assuming k = |D2|/4 (which is quite reasonable based
on our experiments) we get the inequality of Prop. 3.
As it is shown in Figure 5, it follows that (a) for m ≈

1 (i.e., nodes are reduced by half as categories grow), the
bottom-up approach is better that the top-down when |D| >
6, (b) for m = 2 (i.e., each category has the same number of
nodes) top-down is always better, whereas (c) for m = 1.6
the bottom-up traversal is more efficient than the top-down
for |D| ≥ 17. The experiments in §5.2 are explained by this
analysis, and we identify the same trade-off for m = 1.6. As
regards memory requirements, the top-down approach needs
significantly more space since it keeps in the worst case in

memory the nodes of a specific level k (i.e.,
(|D|

k

)
nodes)

whose number can be huge for big lattices while the bottom-
up keeps at most |D| nodes (i.e., maximum depth is |D|).
Finally, an alternative straightforward, but less efficient, way
to compute the lattice is to use a directCount scan (dcs)
approach for each subset. The complexity of dcs isO(|V |∗C)
(exponential in number directCount scans).
Computing a Part of the Lattice. Here we describe how
one can compute only parts of the lattice.
• Single Node. For computing a specific node B, we can scan
allBi ∈ Left(directCount) and sum all the directCount(Bi)
if Bi ∈ Up(B). Its complexity is O(C).
• Threshold-based Nodes. For computing only the co∼(B) of
subsets that satisfy a specific threshold (e.g., co∼(B) ≥ 20),
it is beneficial to use the bottom-up approach. Indeed, fewer
nodes will be created since we can exploit Prop. 2 to avoid
creating nodes that are impossible to satisfy the threshold.
• Lattice of a subset of Datasets. For computing only the
nodes of the lattice that contain datasets only from a partic-
ular subsetD′ (D′ ⊂ D), the previous analysis as regards the
two types of traversal holds also in this case. The only dif-
ference is that here instead of using the original directCount
we use directCount(B,D′) defined as directCount(B,D′) =
| { u ∈ Left(ei) | B = ei(u)∩D′}| which can be produced
by scanning once the element index.

Figure 5: CheckCost vs extra edges for various m

Table 7: Datasets Statistics
Domain |D| |Triples| |URIs|
Cross Domain (CD) 19 293,129,862 103,281,343
Geographical (GEO) 14 155,591,494 34,169,442
Life Sciences (LF) 17 66,684,349 9,725,521
Government (GOV) 45 61,189,128 6,896,850
Publications (PUB) 76 53,930,138 10,932,689
Media (MED) 9 15,267,271 4,434,038
Linguistics (LIN) 8 9,128,072 2,059,465
Social Networking (SN) 96 2,451,093 561,686
User Content (UC) 16 1,059,255 308,193
All 300 658,430,662 172,369,227

• All Nodes containing a particular dataset. For computing
only the nodes of the lattice that contain a particular subset
Di (Di ∈ D), we follow a similar approach, i.e. instead of
using the original directCount we use directCount(B,Di)
defined as directCount(B,Di) = | { u ∈ Left(ei) | ei(u) =
B and Di ∈ B } |.

5. EXPERIMENTAL EVALUATION
Here we report the results of two kinds of experiments: a)

interesting measurements over the entire LOD, and b) mea-
surements that quantify the speedup obtained by the intro-
duced techniques. We used a single machine having an i7
core, 8 GB main memory and 1TB disk space, and the triple-
store Openlink Virtuoso7 Version 06.01.3127 for uploading
the datasets and for sending SPARQL ASK queries.

Datasets. The set of datasets that was used in the ex-
periments contains 300 datasets which were collected from
the following resources: (a) the dump of the data which
were used in [21], (b) online datasets from datahub.io web-
site, and (c) subsets of (i)DBpedia version 3.9, (ii) Wikidata,
iii) Yago and iv) Freebase. Table 7 shows the number of
datasets, triples and URIs for each domain (in descending
order w.r.t. their size in triples). Most datasets are from the
social networking domain, however, most of them contain a
small number of triples and URIs. On the contrary, 68% of
triples and 79.7% of URIs are part of cross domain and geo-
graphical datasets although their union contains 33 (of 300)
datasets. The selected set of datasets is quite representative
and adequately large for the needs of this paper (658 million
triples, powerset of |D| = 300 containing 2300 elements).

5.1 Measurements over the Datasets
Statistics derived by the Indexes. Table 8 synopsizes
some interesting statistics for the datasets and the creation
of the element index. Firstly, according to the prefix index,
each dataset’s URIs contains on average 212 different pre-
fixes. Element index contains 6.2 million real world objects
(rwo). As one can see, there are 3,293,248 rwo (2.3% of all
the rwo) which are part of three or more datasets. This

7http://virtuoso.openlinksw.com/



Table 8: Index Creation Statistics
Category Value

Prefix Index Size 63,803
Unique Real World Objects 141,269,960
Element Index Size (rwo) 6,242,344
Element Index Size (URIs) 17,840,499
Asks Number 6,684,242
rwo in 3 or more Di 3,293,248
URIs corresponding to rwo in 3 or more Di 12,296,650
Num. of Lattice Nodes (threshold ≥ 30) 130,525,631
Num. of Lattice Nodes (threshold ≥ 20) 1,541,968,012

Table 9: SameAs Catalog Statistics
Category Value

SameAs Triples 13,158,621
SameAs Catalog Size 18,789,593
SameAs Triples Inferred 19,450,107
Pairs sharing at least 1 real world object 6,708
New Pairs discovered due to SameAs Alg. 2,393
Triads sharing at least 1 real world object 74,432
New Triads discovered due to SameAs Alg. 48,658
SameAs Unique IDs 6,218,958

Figure 6: # of Pairs,
Triads per Threshold

Figure 7: Unique(RWO) -
Max Subset per Level

percentage corresponds to 12,296,650 URIs (8% of unique
URIs). The number of unique B having directCount(B) > 0
are 5,399, i.e. 0.1% of ei size. We used the aforementioned
directCounts for computing the co∼(B) of 130 million lat-
tice nodes (all pairs, triads, quads, quintets and each subset
B where |B| ≥ 6 and co∼(B) ≥ 30) in 3.5 minutes and the
co∼(B) of 1.5 billion nodes (having co∼(B) ≥ 20) in 35 min-
utes by using the bottom-up traversal that described in §4.1.
Finally, we excluded from this computation URIs belonging
to rdf , rdfs, owl and popular ontologies such as foaf .
Gain from transitive and symmetric closure compu-
tation. Regarding the owl:sameAs catalog, Table 9 shows
some statistics derived by the computation of transitive and
symmetric closure. The computation of closure had as a
result 2,393 new pairs (35.6% of the number of all con-
nected pairs) and 48,658 new triads (65.3%) that have at
least one common real world object (without taking into ac-
count URIs belonging in popular ontologies). Moreover, the
algorithm found more than 19 million new owl:sameAs re-
lationships. Indeed, the increase percentage of owl:sameAs
triples was 147.8%. The unique URIs of the owl:sameAs

catalog are 18,789,593 while the different rwo are 6,218,958.
It means that on average there are 3 URIs for a specific real
world object. Finally, Figure 6 shows how many pairs ex-
ist for a number of rwo threshold (e.g., threshold 10 means
that two datasets shares at least 10 rwo) and the analogous
measurement for the triads.
Common real world objects among three or more
datasets. Table 10 shows the ten subsets of size three
or more having the most common real world objects (e.g.,

Table 10: Top-10 Subsets ≥ 3 with the most common
rwo

Datasets of subset B co∼(B)

1: {DBpedia,Freebase,Yago} 2,709,171
2: {DBpedia,Freebase,Wikidata} 1,950,319
3: {DBpedia,Yago,Wikidata} 1,435,713
4: {Yago,Freebase,Wikidata} 1,434,407
5: {DBpedia,Yago,Freebase,Wikidata} 1,434,404
6: {DBpedia,GADM,Freebase} 107,968
7: {DBpedia,GeoNames,Freebase} 98,985
8: {DBpedia,GADM,Wikidata} 96,968
9: {GADM,Freebase,Wikidata} 96,968
10: {DBpedia,GADM,Freebase,Wikidata} 96,968

in descending order according to the number of common
rwo). The most connected triad contains three cross do-
main datasets. Particularly, the subset comprising of the
datasets DBpedia, Freebase and Yago shares 2.7 million of
rwo while the quad that contains also Wikidata (apart from
these datasets) contains 1.43 million of rwo. Afterwards,
combinations of cross-domain and geographical datasets fol-
lows. The first triad that does not contain one of the afore-
mentioned datasets includes three datasets from the pub-
lication domain (d-nb.info, bnf.fr, id.loc.gov) which share
approximately 21 thousand rwo.

Figure 7 shows the unique real world objects and the max-
imum subset (e.g., subset with the most common rwo) per
lattice level for each domain. The mix corresponds to sub-
sets that possibly contain datasets from more than one do-
main. The most connected domain from level 3 to 6 is the
cross domain whereas in the remaining levels (from 7 to 15)
the domain with the most common rwo is the social net-
working domain. Moreover, regarding combinations with
datasets from different domains, there are 8 datasets that
shares approximately hundreds of rwo and 15 datasets shar-
ing over a hundred of rwo. Most of these rwo predominantly
refer to geographical places and to popular persons. Gener-
ally, cross domain datasets take part in the most combina-
tions with datasets from different domains.
Top datasets containing frequent real world objects.
Regarding the datasets having the most real world objects
in a subset of three or more datasets, DBpedia is the biggest
dataset as we can observe in Table 11 (in ascending or-
der with respect to the number of rwo in three or more
datasets). It is rational that DBpedia is first in this cat-
egory since it is the biggest hub of the LOD Cloud while
the three other popular cross domain datasets follow. The
other datasets are predominantly from the geographical do-
main while there are datasets from the publications, media
and lifescience domain containing more than ten thousand
of such rwo objects. Additionally, 129 of 300 datasets (43%)
contain at least hundreds of rwo that can be found in three
or more datasets. Moreover, we can see the percentage of
the rwo of each dataset that exist in three or more datasets.
It is worth mentioning that GeoNames and LinkedGeoData
have the lowest percentages regarding the datasets of Table
11 while the cross domain datasets have the bigger ones.

5.2 Efficiency of Measurements
Here we focus on measuring the speedup obtained by the

introduced indexes and their construction.
Savings by Prefix Index. Regarding the prefix index,

89% of prefixes exist only in one dataset. However, this per-
centage corresponds only to the 10.8% of distinct URIs while
11% of the prefixes to the 89.2% of URIs. In any implemen-



Figure 8: SameAs Cata-
log Construction time

Figure 9: Comparison of
different approaches

Figure 10: Comparison
with stable |D| = 17

Figure 11: Execution
Time of Lattice creation

Table 11: Top-10 datasets with the most rwo exist-
ing at least in 3 datasets
Dataset Di rwo in ≥ 3 Di (% of Di rwo)

DBpedia 3,246,415 17.3%
Freebase 3,237,604 11.3%
Yago 2,712,930 48.0%
Wikidata 1,952,222 7.3%
GADM Geovocab 108,503 9.4%
GeoNames 102,747 0.4%
d-nb.info 65,076 4.2%
LinkedGeoData (LGD) 43,265 0.6%
Opencyc 34,313 26%
LMDB 30,225 2.3%

tation (e.g., index approach with or without ASK queries),
the URIs starting with a prefix existing in one dataset can
be ignored, therefore there is no need to compare these URIs
with others (e.g., by sending an ASK query or by keeping
them until the end). In our case, we ignored 16,689,866
URIs and we sent ASK queries for a URI of a specific dataset
only to the other datasets having more URIs for each prefix
(see subsection 3.5). For this reason (e.g., the optimized se-
quence of datasets in prefix index) 6.68 million ASK queries
(1 ASK query per 19 URIs having a prefix that can be found
in two or more datasets and does not belong to a sameAs re-
lationship) sent where in any random case the number could
be much bigger.
SameAs Signature-Based vs Connected Compo-

nents Algorithm. Here we compare the signature-based
algorithm (SBA) versus Tarjan’s connected components
(CC) algorithm [22] that uses Depth-First Search (DFS) and
was described in §3.4. We performed experiments for 3 to 9
million randomly selected owl:sameAs relationships and the
results are shown in Figure 8. As one can see, the experi-
ments confirmed our expectations since the signature-based
algorithm is much faster than the combination of the cre-
ation of graph and CC algorithm while it is even faster than
the CC algorithm as the number of owl:sameAs pairs in-
creases. Regarding the space, for 10 million or more pairs it
was infeasible to create and load the graph due to memory
limitations. For this reason we failed to run the CC algo-
rithm, however, one can use techniques like those presented
in [1] to overcome this limitation. The signature-based algo-
rithm needed only 45 seconds to compute the closure of the
owl:sameAs pairs of our experiments (in number 13 million).
Index Approach vs Straightforward Method. Here

we compare the execution time of the following three meth-
ods that described in §3.5: (a) an index approach with-
out ASK queries (Index) (b) an index approach with ASK
queries (Index+ASK) and (c) a straightforward method (sf).
For the index approaches we include in the execution time
the creation of the prefix index and the calculation of lat-

tice nodes by using the bottom-up approach that described
in §4. Figure 9 shows the execution time in minutes for
the aforementioned approaches for varying number of |D|.
The datasets of this experiment belong to the publications
domain and the number of URIs is approximately nine mil-
lions. As the number of datasets grows, the execution time
of the sf method increases exponentially. On the contrary,
the execution time of the Index approach ranges from 17
to 23 seconds. The Index+ASK approach needs more time
comparing to the other two approaches for 10-16 datasets.
However, it is faster than the sf method for |D| > 16 since its
execution time does not increase so much when new datasets
are added. In another experiment that is shown in Figure
10, we report the efficiency for various values of |URIs| but
with stable number of |D| = 17. The number of URIs for
these 17 datasets varies from 8,000 to 1,000,000. As one can
see, the execution time of both sf and Index+ASK meth-
ods increases linearly as the number of URIs grows. In this
experiment, the number of ASK queries increased linearly
when more URIs added. Indeed, the execution time of In-
dex+ASK approach highly depends on the number of ASK
queries and their response time. Consequently, in case of
adding millions of URIs having a prefix that can be found
only in one dataset, the number of ASK queries will not be
increased. Therefore, the execution time will be increased
less than linearly in that case. Finally, the Index approach
is again very fast and its execution time ranges from 5 to 27
seconds. In these experiments it is evident that the Index ap-
proach is always faster than the other approaches. However,
in the experiments of §5.1, where the data was infeasible to
fit in memory, we used the Index+ASK approach.

Computation of power set intersections. Here we
compare the performance of the two lattice incremental al-
gorithms and the directCount scan (dcs) approach for each
subset which described in §4.1. We selected 24 datasets
that are highly connected (i.e., each subset of lattice has
co∼(B) > 0) and the number of directCount nodes for the
lattice of these 24 datasets is approximately 1,000 (from over
4 million rwo). In Figure 11, we can see that each incremen-
tal approach is faster than the dcs approach. Concerning
the incremental approaches, one can clearly see the trade-
off between the two approaches. Indeed, for lower number
of datasets the top-down approach is faster, since the cost of
edges creation is lower than the cost for checking the Up(B)
of each subset B. As the number of datasets grows (for ≥ 17
datasets), the bottom-up approach is faster, since the num-
ber of edges (and their cost) increases greatly compared to
the cost of checking the Up(B). Moreover, for |D| ≥ 25, it
was infeasible to use the top-down approach due to memory
limitations while with the bottom-up approach we computed
the co∼(B) of more than 230 subsets as mentioned in §5.1.



6. CONCLUDING REMARKS
Existing approaches for measurements over the LOD ei-

ther report measurements between pairs of datasets, or focus
on document-based features (not dataset-based), or do not
focus on indexes for speeding up such measurements. Since
it would be prohibitively expensive to compute measure-
ments that involve more than two datasets without special
indexes, in this paper we have introduced various indexes
(and their construction algorithms) that can speedup such
measurements. We introduced a namespace-based prefix in-
dex, a sameAs catalog for computing the symmetric and
transitive closure of the owl:sameAs relationships encoun-
tered in the datasets, a semantics aware element index (that
exploits the aforementioned indexes) and two lattice-based
incremental algorithms for speeding up the computation of
the intersection of URIs of any set of datasets. We showed
that with the proposed algorithm it takes only 45 seconds
to compute the reflexive and transitive closure for 13 mil-
lions of owl:sameAs relationships. As regards the compu-
tation of intersections we showed that the combination of
the element index and the bottom-up incremental lattice-
based algorithm is much faster (even 100 times faster for 20
datasets) than a straightforward method whose time com-
plexity increases exponentially as the number of datasets
and their size increase. We exploited the introduced in-
dexes for making various measurements over the entire LOD.
A few indicative follow. The measurements showed that a
dataset contains on average URIs with 212 different prefixes,
and that 89% of the prefixes are used in 10.8% of URIs and
occur in only one dataset. Concerning owl:sameAs relation-
ships, for a real world object exist on average 3 URIs. The
transitive and symmetric closure of the owl:sameAs rela-
tionships of all datasets yielded more than 19 million new
owl:sameAs relationships, and this increases the connectiv-
ity of the datasets: 35.6% of the 6,636 connected pairs of
datasets are due to these new relationships. Regarding the
rwo of element index, 60% of them exist in ≥ 3 datasets.
The measurements also reveal the “sparsity” of the cur-

rent LOD cloud and make evident the need for better con-
nectivity. Only 2.3% of real world objects (in number
3,293,248) are part of three or more datasets. Most of these
real world objects (belonging in ≥ 3 datasets) are part of
cross domain datasets such as DBpedia and geographical
datasets like GeoNames. Additionally, many datasets from
the social networking domain are highly connected.
There are several topics that are worth further research.

An interesting direction is to investigate how to make the
lattice of measurements adaptive (in a way similar in spirit
with [27] for data series). Another direction is to investi-
gate the speedup that can be achieved by parallelizing the
measurements in a MapReduce context, or by developing
methods for approximate measurements.

Acknowledgments. This work was partially funded by
the BlueBRIDGE project (H2020 Research Infrastructures,
2015−2018, Project No: 675680).

7. REFERENCES
[1] C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity

index for massive disk-resident graphs. Proceedings of the
VLDB Endowment, 2(1):862–873, 2009.

[2] S. Auer, J. Demter, M. Martin, and J. Lehmann. LODStats - an
Extensible Framework for High-Performance Dataset Analytics.
In Proceedings of EKAW, volume 7603, pages 353–362. 2012.

[3] N. Bikakis and T. K. Sellis. Exploration and visualization in
the web of big linked data: A survey of the state of the art. In
LWDM, 2016.

[4] C. Bizer, P. Boncz, M. L. Brodie, and O. Erling. The
meaningful use of big data: four perspectives–four challenges.
ACM SIGMOD Record, 40(4):56–60, 2012.

[5] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,
P. Reddivari, V. Doshi, and J. Sachs. Swoogle: a search and
metadata engine for the semantic web. In Proceedings of
CIKM, pages 652–659, 2004.

[6] M. B. Ellefi, Z. Bellahsene, S. Dietze, and K. Todorov. Dataset
recommendation for data linking: an intensional approach. In
Proceedingss of ESWC, volume 9678, pages 36–51, 2016.

[7] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A
federated repository for querying graph structured data from
the web. In ISWC, volume 4825, pages 211–224, 2007.

[8] J. Hendler. Data integration for heterogenous datasets. Big
data, 2(4):205–215, 2014.

[9] A. Hogan, A. Harth, and S. Decker. Performing object
consolidation on the semantic web data graph. In Proceedings

of the WWW Workshop I3, 2007.

[10] A. Hogan, A. Harth, J. Umbrich, S. Kinsella, A. Polleres, and
S. Decker. Searching and browsing linked data with swse: The
semantic web search engine. Web semantics: science, services
and agents on the world wide web, 9(4):365–401, 2011.

[11] T. Jech. Set theory. Springer Science & Business Media, 2013.

[12] M. H. Keith Alexander, Richard Cyganiak and J. Zhao.
Describing linked datasets with the VoID vocabulary, W3C
interest group note, 2011.

[13] G. Klyne and J. J. Carroll. Resource description framework
(rdf): Concepts and abstract syntax. 2006.

[14] M. Mountantonakis, N. Minadakis, Y. Marketakis, P. Fafalios,
and Y. Tzitzikas. Quantifying the connectivity of a semantic
warehouse and understanding its evolution over time. IJSWIS,
12(3), 2016.

[15] M. Nentwig, T. Soru, A.-C. N. Ngomo, and E. Rahm. Linklion:
A link repository for the web of data. In The Semantic Web:
ESWC Satellite Events, volume 8798, pages 439–443. 2014.

[16] T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal, 19(1):91–113,
2010.

[17] D. Oguz, B. Ergenc, S. Yin, O. Dikenelli, and A. Hameurlain.
Federated query processing on linked data: a qualitative survey
and open challenges. The Knowledge Engineering Review,
30(5):545–563, 2015.

[18] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao. Processing
SPARQL queries over distributed RDF graphs. The VLDB
Journal, 25(2):243–268, 2016.

[19] E. Prud’ Hommeaux, A. Seaborne, et al. SPARQL query
language for RDF. W3C recommendation, 15, 2008.

[20] L. Rietveld, W. Beek, and S. Schlobach. LOD lab: Experiments
at LOD scale. In Proceedings of ISWC, volume 9367, pages
339–355, 2015.

[21] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of
the linked data best practices in different topical domains. In
Porceedings of ISWC, volume 8796, pages 245–260. 2014.

[22] R. Tarjan. Depth-first search and linear graph algorithms. In
Twelfth Annual Symposium on Switching and Automata
Theory, pages 114–121, 1971.

[23] Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides.
On graph features of semantic web schemas. Knowledge and
Data Engineering, 20(5):692–702, 2008.

[24] G. Tummarello, E. Oren, and R. Delbru. Sindice.com: Weaving
the open linked data. In Proceedings of ISWC, volume 4825,
pages 547–560, 2007.

[25] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and
S. Auer. Quality assessment for linked data: A survey.
Semantic Web Journal, 7(1):63–93, 2016.

[26] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM computing surveys, 38(2):6, 2006.

[27] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for
interactive exploration of big data series. In Proceedings of the
ACM SIGMOD, pages 1555–1566, 2014.


