On Measuring the Lattice of Commonalities Among Several Linked Datasets

Michalis Mountantonakis and Yannis Tzitzikas

FORTH-ICS Information Systems Laboratory

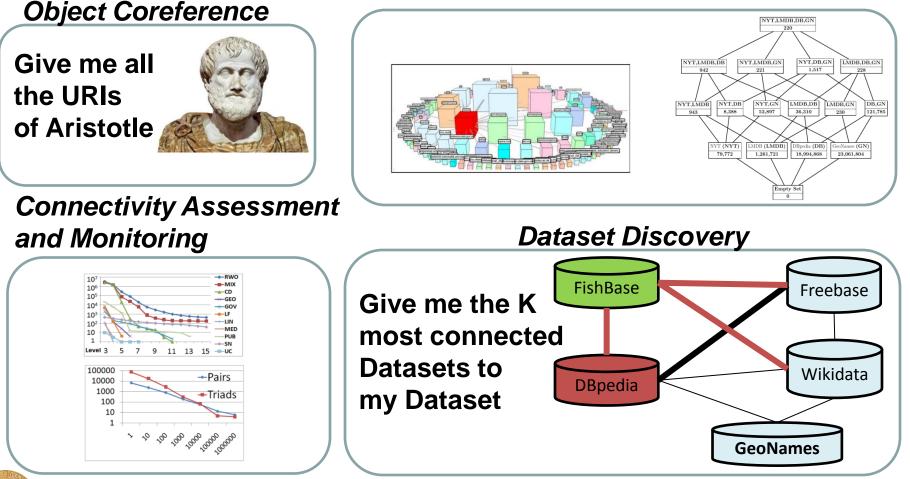
University of Crete Computer Science Department

FORTH, ISL, Hellas

Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016

Outline

- Introduction (3m)
- Related Work (1m)
- The Proposed Indexes & Algorithms (12 m)
 - Prefix Index
 - SameAs Catalog
 - Element Index
 - Lattice Algorithms
- Experimental Evaluation (3 m)
 - Experiments on 300 LOD Cloud Datasets
 - Comparative results
- Publishing & Exchanging Measurements (0.5 m)
 - Datahub, Visualization, Answerable Queries
- Conclusion (0.5 m)


Introduction

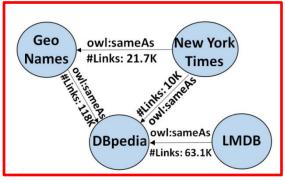
Motivation

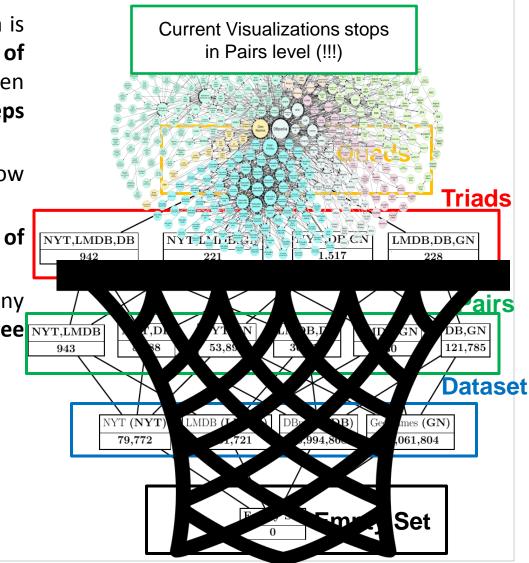
• Our approach tries to **aid** the **execution** of the **following tasks**:

Visualizations

Motivation- Object Coreference (Everything for a URI)

- Suppose that one user wants to find **all the available information** (and URIs) **about an entity** (or URI).
 - We want also the URIs being **owl:sameAs** with the desired one.
- It is not trivial to achieve this, since
 - the symmetric and transitive closure of owl:sameAs relationships should be computed
 - it presupposes knowledge from all the datasets.

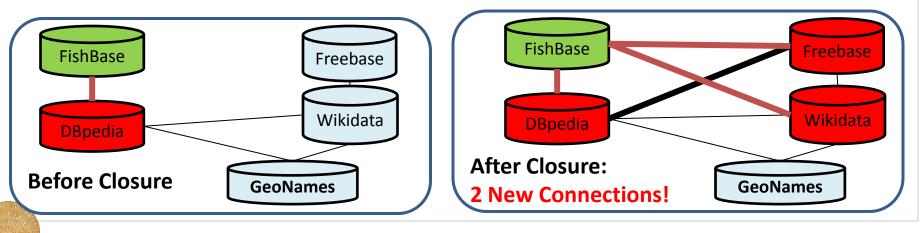

http://dbpedia.org/resource/Aristotle


gresource/Anstolle
uivalentURI
nset_58775
drcN5Y29ycA
942-n
uth/E21_Person/f17bdd5d-9185-3871-ade2-3dc94fd7856f
ry/x90052251
es/synset-Aristotle-noun-1
EbGdrcN5Y29ycA

97.

Motivation – Connectivity & Visualizations (LOD Cloud)

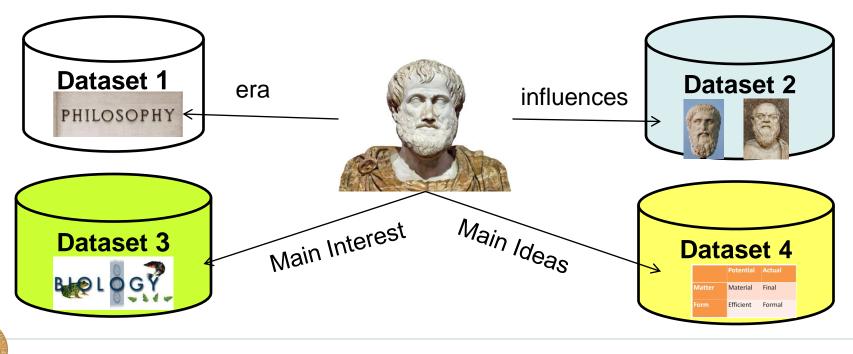
- The ultimate objective of Linked Data is linking and integration a big number of RDF datasets has already been published and this number keeps increasing!
- It is difficult to understand how connected the current LOD cloud is!
- Only measurements between pairs of datasets are available!
- It is not possible to see how many common entities exist between three NYT,LMDB or more sources! ⁽³⁾



6

FORTH, ISL, Hellas

Motivation – Dataset Discovery & Selection


- Suppose that you **publish a dataset and you establish relationships with DBpedia**. Then, you would like to find the K more related datasets to our dataset :
 - (a) for constructing a semantic warehouse
 - (b) for mediator-based query answering.
- With the proposed indexes and measurements (including the computation of the transitive closure of owl:sameAs), you could get much more datasets!!!

FORTH, ISL, Hellas

Motivation- Gain of Integration

- Collecting information about the same real world entity from several datasets
 - can verify or clean that information
 - can produce a more accurate or correct consolidated dataset
 - can "widen" the information for a URI.

FORTH, ISL, Hellas

Contributions of our work

It is very expensive to perform all these measurements straightforwardly.

- 1. There are many datasets and some of them are very big.
- 2. The possible combinations of datasets is exponential in number!
- We introduce a **namespace-based prefix index** for speeding up the computation of the metrics

- We introduce a **sameAs catalog** for computing the symmetric and transitive closure of the sameAs relationships encountered in the datasets
- We introduce a semantics-aware element index and lattice-based incremental algorithms for speeding up the computation of the intersection of URIs of any set of datasets
- We report **connectivity measurements** for a subset of the **current LOD Cloud** that comprises **300 datasets**.
- We measure the speedup obtained by the proposed indexes and algorithms by providing comparative results

Related Work

Related Work: Experiments in LOD Scale

- LOD Laundromat: LOD Lab Experiments in LOD Scale [1] (ISWC'2015)
 - 38 billion triples indexed
 from 657 thousand documents

Key differences

1. We provide measurements concerning the connectivity of various datasets.

They provide statistics about validity or format of documents, number of triples etc.

2. We take into account the semantics (e.g., sameAs relationships)

- LinkLion: A Link Repository for the Web of Data [2] (ESWC'2014)
 - An open link repository containing mappings between pairs of datasets (e.g., owl:sameAs relationships)

Key differences

They take into account only mappings between 2 datasets. We find common real world objects between two or more datasets.
 We compute the transitive and symmetric closure.
 We use indexes for reusing the measurements for several tasks.

Related Work: Indexes for search and queries

- **YARS2** [3] is a federated repository that queries linked data coming from different datasets.
 - Why they use indexes: for allowing direct lookups on multiple dimensions without requiring joins
- **Swoogle** [4] is a crawler-based indexing and retrieval system for the semantic web.
 - Why they use indexes: for answering user's queries
- **RDF-3X** [5] is an engine for scalable management of RDF data which is an implementation of SPARQL [6].
 - Why they use indexes: for faster query answering by maintaining six indexes for all possible permutations of an RDF triple members (s p o)
- We use indexes for finding how connected are the different subsets of any size of dataets and for performing faster such measurements

The Proposed Indexes & Algorithms

Definitions

- **D={D**₁,..., **D**_n**}**: a set of Datasets
- **U={U₁,..., U_n}** : a set of URIs
- **P(D)** : the powerset of **D**.

•Considering Equivalence Relationships:

- $sm(D_i)$: the owl:sameAs relationships of $D_i \quad sm(D_i) = \{(u, u') \mid (u, sameAs, u') \in triples(D_i)\}$
- *SM(B)* : the union of the **owl:sameAs** relationships in B. $SM(B) = \bigcup_{D_i \in B} sm(D_i)$.
- C(SM(B)): the transitive and symmetric closure of sameAs relationships for subset B

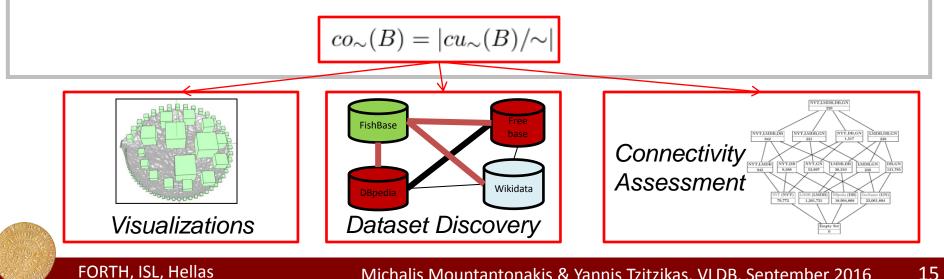
Classes of Equivalence:

- Utemp={u₁, u₂, u₃, u₄, u₅} and 2 owl:sameAs relationships: u₁ ~ u₃ and u₁ ~ u₄. Derived classes of equivalence : <u>Utemp/~</u>={ {u₁, u₃, u₄ }, {u₂}, {u₅}}
- \checkmark Equivalent URIs (considering all datasets in B) of a URI u (or all URIs U) :

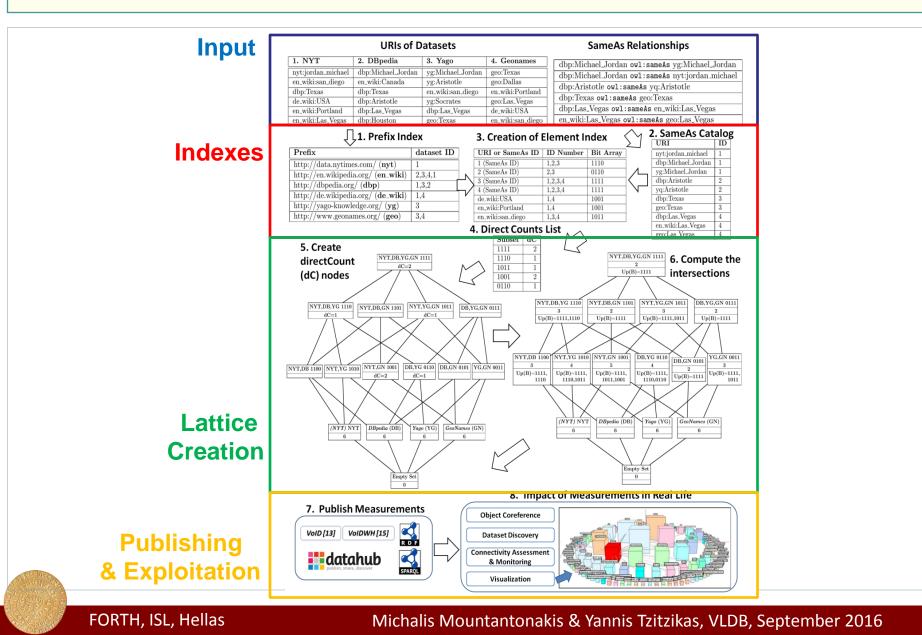
 $Equiv(u,B) = \{ u' \mid (u,u') \in \mathcal{C}(SM(B)) \} \quad Equiv(U,B) = \bigcup_{u \in U} Equiv(u,B)$

Problem Statement

• We **focus** on how to compute efficient the following formulas for any $u \in U$ and **B** $\subseteq D$:


Datasets Containing a particular URI u or Equivalent URI:

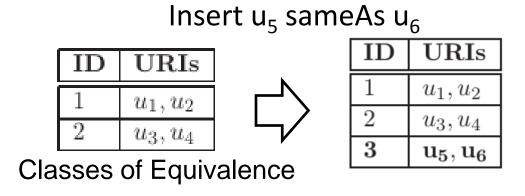
 $dsets_{\sim}(u) = \{ D_i \in \mathcal{D} \mid (\{u\} \cup Equiv(u, \mathcal{D})) \cap U_i \neq \emptyset \}$


Number of common real world objects in a subset B: the number of common classes of equivalence in a subset B where

$$cu_{\sim}(B) = \{ u \in U \mid dsets_{\sim}(u) \supseteq B \}$$

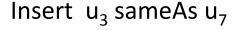
Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016 15

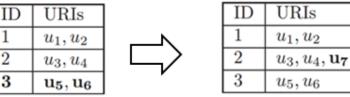
The Proposed Approach - Running example


Prefix Index

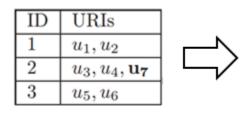
- What is it: A prefix index lists all namespaces and for each one what datasets contain them.
- Construction Method: Send a SPARQL query or Scan the URIs of each dataset once.
 - Store for each prefix the datasets that is appears (in ascending order w.r.t. frequency)
- **Rationale**: For reducing the cost of finding common URIs since:
 - There is no need to compare URIs having different Prefixes
 - If a prefix p exists in one dataset, it is impossible for the URIs starting with p to be found in an another dataset
- Efficiency: This index is usually small in size (i.e., 212 prefixes per dataset).

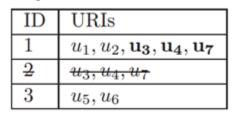
1. NYT	2. DBpedia	3. Yago	4. Geonames	Prefix	dataset ID
nyt:jordan_michael	dbp:Michael_Jordan	yg:Michael_Jordan	geo:Texas	http://data.nytimes.com/ (nyt)	1
en_wiki:san_diego	en_wiki:Canada	yg:Aristotle	geo:Dallas	http://en.wikipedia.org/ (en_wiki)	2,3,4,1
dbp:Texas	dbp:Texas	en_wiki:san_diego	$en_wiki:Portland$	http://dbpedia.org/ (dbp)	1,3,2
de_wiki:USA	dbp:Aristotle	vg:Socrates	geo:Las_Vegas		
en_wiki:Portland	dbp:Las_Vegas	dbp:Las_Vegas	de_wiki:USA	http://de.wikipedia.org/ (de_wiki)	1,4
en_wiki:Las_Vegas	dbp:Houston	geo:Texas	en_wiki:san_diego	http://yago-knowledge.org/ (yg)	3
				http://www.geonames.org/ (geo)	3.4

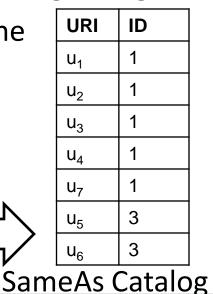

SameAs Catalog


- What is it: A catalog where all the URIs that belong to the same class of equivalence are getting the same signature.
- **Construction Method:** We introduce a signature-based algorithm that stores for each URI of the pair (u,u') ∈ SM(D) a unique ID (or signature) according to 5 rules.
- The 5 rules are the following for a pair of URIs u_1 sameAs u_2 :
 - *Rule 1*. If both URIs have not a signature, a new signature is assigned in both of them.

SameAs Catalog Construction Rules


- **Rules 2-3**. If u_1 has an signature while u_2 has not, u_2 gets the same signature as u_1 . (or the opposite)

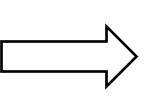




- **Rule 4**. If both URIs have the same signature nothing changes
- *Rule 5*. If both URIs have a different signature, the URIs of these two signatures are concatenated and only the lower signature is kept.

Insert u₁ sameAs u₃

FORTH, ISL, Hellas

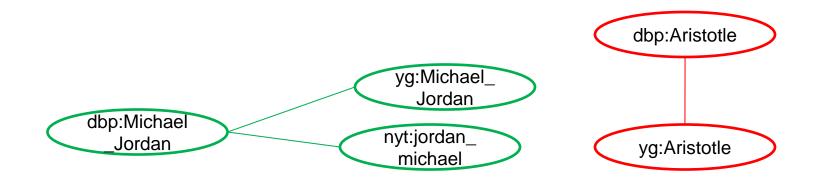

SameAs Catalog- Running Example & Efficiency

SameAs Relationships

dbp:Michael_Jordan owl:sameAs yg:Michael_Jordan dbp:Michael_Jordan owl:sameAs nyt:jordan_michael dbp:Aristotle owl:sameAs yq:Aristotle dbp:Texas owl:sameAs geo:Texas

dbp:Las_Vegas owl:sameAs en_wiki:Las_Vegas

en_wiki:Las_Vegas owl:sameAs geo:Las_Vegas


2. SameAs Catalog		
URI	ID	
nyt:jordan_michael	1	
dbp:Michael_Jordan	1	
yg:Michael_Jordan	1	
dbp:Aristotle	2	
yq:Aristotle	2	
dbp:Texas	3	
geo:Texas	3	
dbp:Las_Vegas	4	
en_wiki:Las_Vegas	4	
geo:Las_Vegas	4	

• Efficiency:

- (+) It reads each sameAs pair only once i.e., O(n) time complexity
- (-) It keeps in memory the catalog and the classes of equivalence,
 - i.e., space complexity is O(m), where m is the number of distinct URIs.

SameAs Catalog – Alternative Approach

- Alternative Approach
 - Turn the SameAs Relationships to an undirected graph
 - Find the connected components (CC) be using Tarjan's Algorithm [7].
 - (+) The time complexity of CC algorithm is O(m) (m: distinct URIs)
 - (-) It requires the creation of the graph (O(n) for creating the graph)
 - (-) Total time complexity required is O(m+n)
 - (-) Total space needed is O(m+n)

Element Index

- What it is: For each URI or signature appearing in two or more datasets, it stores the datasets where it appears.
- There are two different ways to store the datasets in the Element Index:

1. Store a **bit array** of length n (n=|D|) that indicates the datasets in which an element belongs

- (+) Can be easily exploited for lattice representation
- 2. Create an **inverted index** in which for each URI stores a posting list of dataset identifiers
 - (+) It reduces the size of the Element-Index especially for sparse indexes

Element Index (1st step)- SameAs Catalog Exploitation

- The algorithm reads each time the URIs of a specific dataset
- The first step is always to look if the URI exists in the SameAs Catalog
 - If a URI (of Di) belongs to SameAs Catalog add to the Element Index:
 - an entry comprising the identifier of the URI (in the SameAs Catalog)
 - the dataset ID (i.e., an arbitrary distinct number)

1. NYT	2. DBpedia	3. Yago	4. Geonames
	dbp:Michael_Jordan	yg:Michael_Jordan	geo:Texas
en_wiki:san_diego	en_wiki:Canada	yg:Aristotle	geo:Dallas
dbp:Texas	dbp:Texas	en_wiki:san_diego	en_wiki:Portland
de_wiki:USA	dbp:Aristotle	yg:Socrates	geo:Las_Vegas
en_wiki:Portland	dbp:Las_Vegas	dbp:Las_Vegas	de_wiki:USA
en_wiki:Las_Vegas	dbp:Houston	geo:Texas	en_wiki:san_diego

URIs of Datasets

URI	ID
nyt:jordan_michael	1
dbp:Michael Jordan	1
yg:Michael_Jordan	1
dbp:Aristotle	2
yq:Aristotle	2
dbp:Texas	3
geo:Texas	3
dbp:Las_Vegas	4
en_wiki:Las_Vegas	4
geo:Las_Vegas	4

SameAs Catalog

URI or sameAsID	ID Number	Bit Array
1 (SameAsID)	1,2,3	1110

Element Index

Element Index - Remaining Steps

- **2**nd **step** : update the index entry of a URI if the URI already belongs to the Element-Index .
- **3**rd step: If the prefix of the URI exists (by looking up the prefix index) in an another dataset, then there exist two possible approaches:
- First approach (*Index*):
 - 1. Store the URI in the element-index
 - \rightarrow It is a **candidate** for existing in an another source
 - 2. In the end delete those URIs that belong only to one source
- Second approach (*Index+ASK*) for reducing space:
 - 1. Send an ASK Query **only** to the other datasets containing this prefix in order to discover if this URI exists also in an another dataset
 - ASK { graph <Dataset> {{ URI ?p ?o} union {?o ?p URI}} }
 - 2. Store the URI in the index if an ASK query returned a true answer
 - \rightarrow It surely exists at least in two datasets

Element Index - Running Example

For the URI de_wiki:USA of NYT

- 1. Check SameAs Catalog \rightarrow No entry with this URI
- 2. Check Prefix in Prefix Index \rightarrow Exists in 2 Datasets
- 3. ASK Geonames for this URI \rightarrow True Answer
- Add to element index the URI and the dataset IDs

For the URI yg:Socrates of Yago

- Check SameAs Catalog → No entry with this URI
- 2. Check Prefix in Prefix Index \rightarrow

Ignore URI: It exists in 1 Dataset

	URIs		
1. NYT	2. DBpedia	3. Yago	4. Geonames
nyt:jordan_michael	dbp:Michael_Jordan	yg:Michael_Jordan	geo:Texas
en_wiki:san_diego	en_wiki:Canada	yg:Aristotle	geo:Dallas
dbp:Texas	dbp:Texas	en_wiki:san_diego	en_wiki:Portland
de_wiki:USA	dbp:Aristotle	yg:Socrates	geo:Las_Vegas
en_wiki:Portland	dbp:Las_Vegas	dbp:Las_Vegas	de_wiki:USA
en_wiki:Las_Vegas	dbp:Houston	geo:Texas	en_wiki:san_diego

SameAs Catalog

URI	ID
nyt:jordan_michael	1
dbp:Michael_Jordan	1
yg:Michael_Jordan	1
dbp:Aristotle	2
yq:Aristotle	2
dbp:Texas	3
geo:Texas	3
dbp:Las_Vegas	4
en_wiki:Las_Vegas	4
geo:Las_Vegas	4

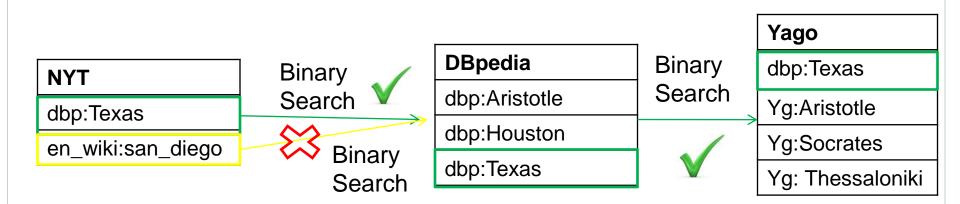
Prefix Index

Prefix	dataset ID
http://data.nytimes.com/ (nyt)	1
$http://en.wikipedia.org/(en_wiki)$	$2,\!3,\!4,\!1$
http://dbpedia.org/ (dbp)	1,3,2
http://de.wikipedia.org/ (de_wiki)	$1,\!4$
http://yago-knowledge.org/ (yg)	3
http://www.geonames.org/ (geo)	3,4

Element Index

URI or SameAs ID	ID Number	Bit Array
1 (SameAs ID)	1,2,3	1110
2 (SameAs ID)	2,3	0110
3 (SameAs ID)	1,2,3,4	1111
4 (SameAs ID)	1,2,3,4	1111
de_wiki:USA	1,4	1001
en_wiki:Portland	1,4	1001
en_wiki:san_diego	1,3,4	1011

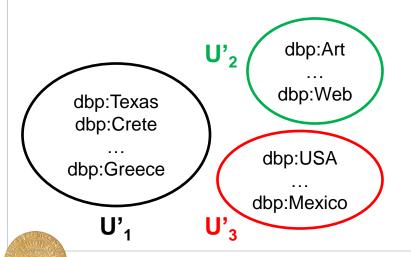
FORTH, ISL, Hellas


Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016

Element Index (cont.)

Efficiency: Time complexity is O(y) where y is the sum of all |Ui|.

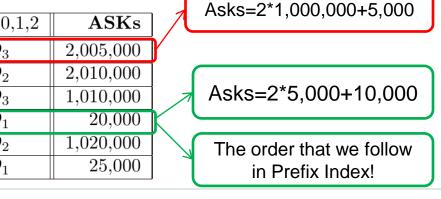
An alternative straightforward approach can be the following:


- □ Sort the URIs of each dataset lexicographically
- □ For each $B \in P(D)$, read the URIs of the smallest dataset.
- □ Perform binary searches to the (n-1) remaining sources.
- **Total time complexity is O(2**|D| nlogn)

Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016

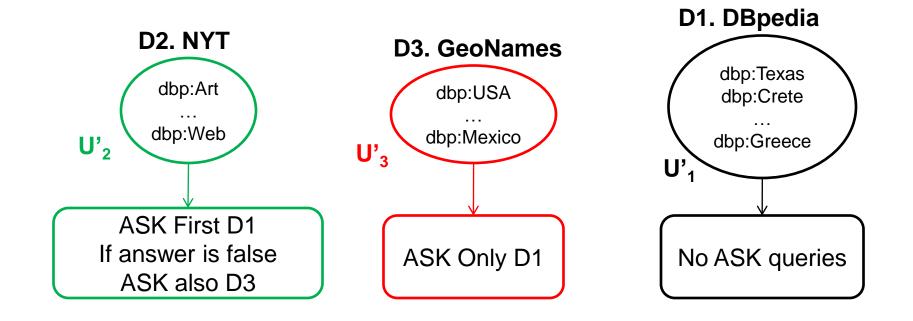
Ordering the Prefix Index for Reducing the ASK Queries

- Let see how the different combinations of the sequence dataset IDs for a • prefix affect the number of ASK queries!
- $U_p = \{ u \in U_i \mid namespace(u) = p \} and U_i' = U \cap U_p$
- In the worst case, for each pair D_i, D_i, we should ulletsend an ASK query from D_i to D_i for all the U_i' in order to check if a URI exists in U_i .

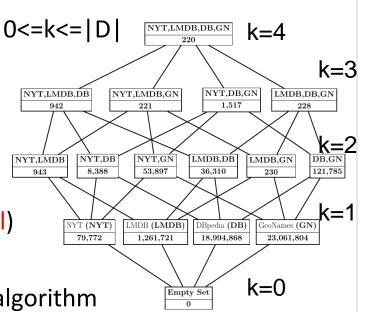


FORTH, ISL, Hellas

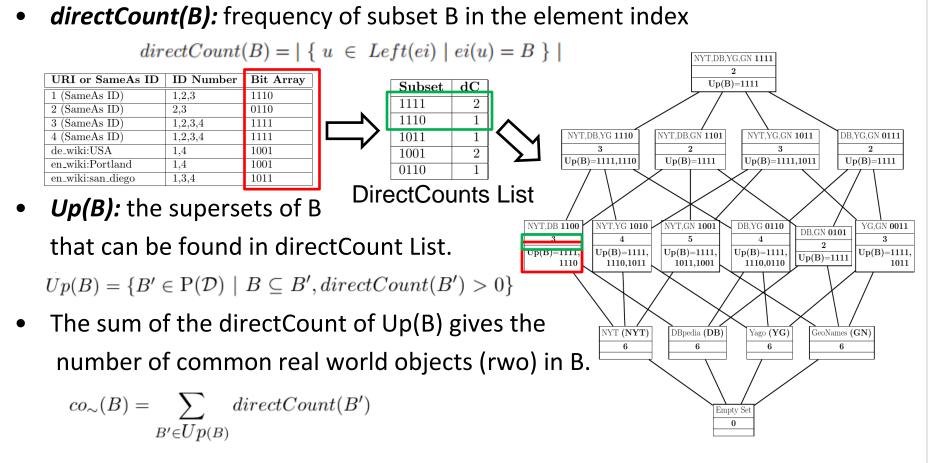
Position 0,1,2	ASKs
D_1, D_2, D_3	2,005,000
D_1, D_3, D_2	2,010,000
D_2, D_1, D_3	1,010,000
D_2, D_3, D_1	20,000
D_3, D_1, D_2	1,020,000
D_3, D_2, D_1	25,000


Prefix	dataset ID
http://data.nytimes.com/ (nyt)	1
$http://en.wikipedia.org/(en_wiki)$	2,3,4,1
http://dbpedia.org/ (dbp)	1,3,2
http://de.wikipedia.org/ (de_wiki)	1,4
http://yago-knowledge.org/ (yg)	3
http://www.geonames.org/ (geo)	$3,\!4$

U'_i	Freq. of p
U'_1	1,000,000
U_2'	5,000
U'_3	10,000

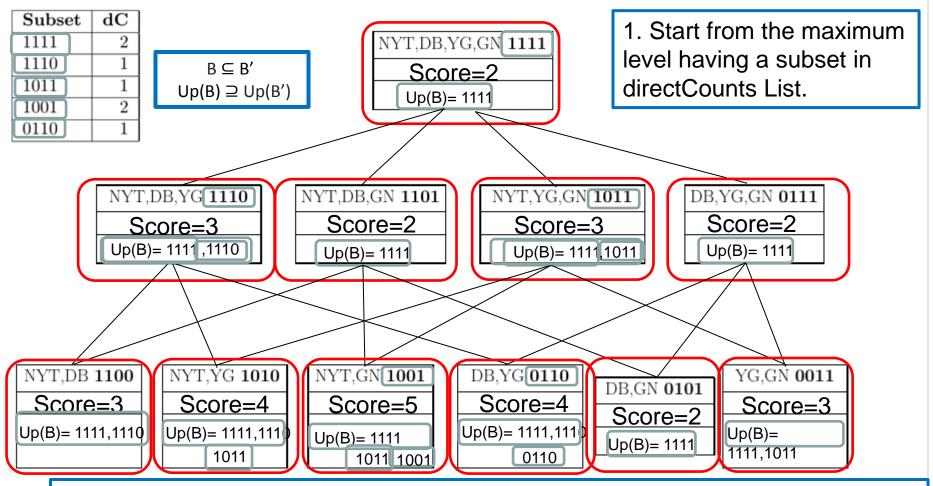

Ordering the Prefix Index for Reducing the ASK Queries (cont.)

- The proposed order reduces the number of ASK queries
 - In the worst case this order gives the minimum number of queries
 - We send queries to other datasets starting with the biggest one
 - This makes more possible to the answer of the first query to be true



The Lattice of Measurements

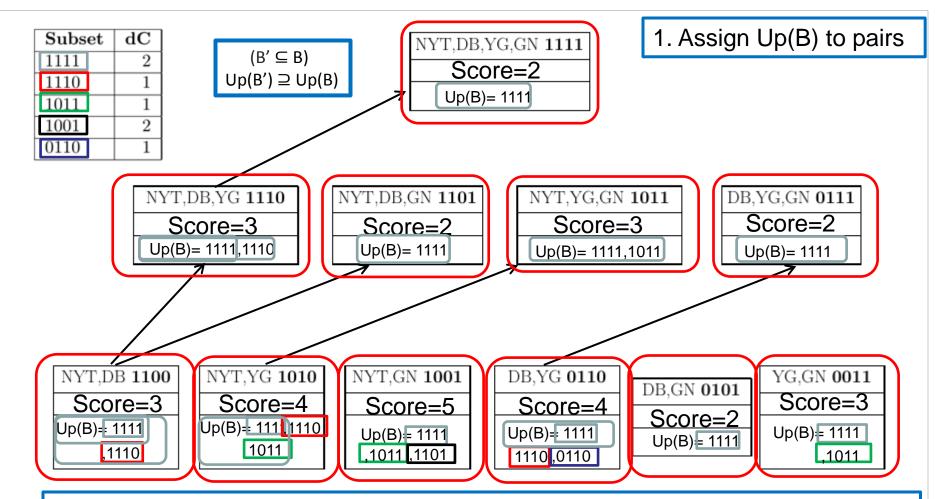
- What it is: A lattice is a partially ordered set which can be represented as a Directed Acyclic Graph (DAG) where the edges points towards the direct supersets.
- A lattice of |D| datasets contains k levels where 0<=k<=|D|
- **Rationale**: For speeding up the computation of the intersection of rwo of all the subsets.
 - We describe two more efficient (incremental) methods based on set theory properties:
 - A top-down lattice-based incremental algorithm
 - A **bottom-up** lattice-based incremental algorithm



Making the Measurements of the Lattice Incrementally-Notations

Proposition 2 Let F and F' be two families of sets. If $F \subseteq F'$ then $\bigcap_{S \in F'} S \subseteq \bigcap_{S \in F} S$.

Top-Down Algorithm (BFS Traversal)



- 1. For each node check if directCount(B)>0 and Add B to Up(B)
- 2. Sum the values of directCount of Up(B)
- 3. Transfer Up(B) to all subsets of B of the previous level since Up(B) \supseteq Up(B') (B \subseteq B')

FORTH, ISL, Hellas

Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016

Bottom-Up Algorithm (DFS Traversal)

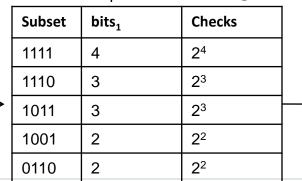
- 1. Sum the directCount of Up(B)
- 2. Assign the Up(B') of each superset B' of the next level if it has not visited yet and then visit B'.
- 3. Check which Up(B) goes to Up(B') since Up(B') \supseteq Up(B) (B' \subseteq B)

FORTH, ISL, Hellas

Michalis Mountantonakis & Yannis Tzitzikas, VLDB, September 2016

Top-Down versus Bottom-Up Approach

 $\frac{\mathbf{dC}}{2}$


 $\frac{1}{2}$

1

	Top-Down	Bottom-up
Nodes	V	V
Edges	E	V
Time complexity	O(V+E)	O(V)
Space Complexity	$O(V_k) V_k = \binom{ D }{k} = \frac{ D !}{k!(D -k)!}$	O(d) d:diameter of graph
Additional cost	Extra edges= (D -2)*2 ^(D -1)	checkCost= $\left \sum_{i=1}^{C} 2^{bits_1(B_i)}\right $
Its is faster when:	Extra edges <checkcost< th=""><th>Extra edges>checkcost</th></checkcost<>	Extra edges>checkcost

 Additional checkCost: In the bottom-up approach, we check each time which of the Up(B) belong to Up(B'). For a subset B_i, that belongs in directCount list:

C:size	Subset	
	1111	
of list	1110	
0.1 % of	1011	
Element ←	1011	
Index Size	0110	
STR.		

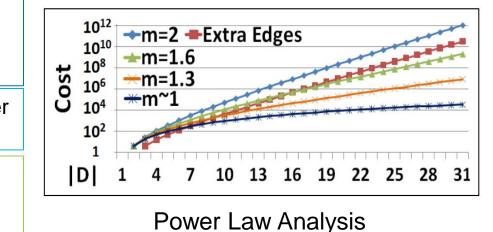
checkCost

FORTH, ISL, Hellas

Power Law Distribution of nodes

- **Proposition**: Group and order in descending order the directCount nodes according to their number of bits (i.e., categories)
 - Categories' frequency follow a power-law distribution $(2 \le n \le |D|)$
 - $f(n) = k * (m/2)^{n-2}$: the number of nodes of the n-th category
 - k: the number of such nodes having bits1(B) = 2
 - in our case $(k = |D^2|/4)$
 - m/2 is the reduction factor $(1 < m \le 2)$

 $|\mathcal{D}|^2 * \frac{m |\mathcal{D}| - 1 - 1}{m - 1}$


The bottom-up approach is more efficient than top-down when:

 $< (|\mathcal{D}| - 2) * 2^{|\mathcal{D}-1|}.$

m~1 : nodes are reduced by half as categories grow Bottom-up is better for |D|>6

m=2 : each category has the same number of nodes → *Top-Down is always better*

m=1.6 : nodes are reduced by 0.8 as
 categories grow
 Bottom-up is better for |D|>16

Extra Edges

Subset	bits ₁	Checks
1111	4	24
1110	3	2 ³
1011	3	2 ³
1001	2	2 ²
0110	2	2 ²

checkCost

Experimental Evaluation

LOD Cloud Experiments- Indexes

- We collected **300 LOD Cloud Datasets** from **9 domains**.
 - 658 millions of triples, 172 millions of URIs, 13 millions of sameAs pairs!
 - Only 2.3% of rwo exists in three or more datasets (4% in two or more)
 - The impact of the closure was incredible!
 - 19 millions of newly discovered owl:sameAs pairs!
 - 2,393 of newly discovered connected pairs of datasets!

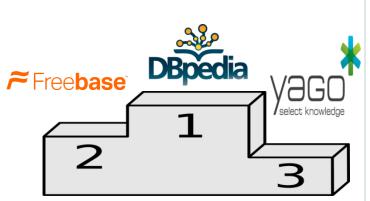
Domain	$ \mathcal{D} $	Triples	URIs
Cross Domain (CD)	19	293,129,862	103,281,343
Geographical (GEO)	14	$155,\!591,\!494$	34,169,442
Life Sciences (LF)	17	$66,\!684,\!349$	9,725,521
Government (GOV)	45	61,189,128	$6,\!896,\!850$
Publications (PUB)	76	$53,\!930,\!138$	10,932,689
Media (MED)	9	$15,\!267,\!271$	4,434,038
Linguistics (LIN)	8	9,128,072	2,059,465
Social Networking (SN)	96	2,451,093	$561,\!686$
User Content (UC)	16	1,059,255	308,193
All	300	$658,\!430,\!662$	172,369,227

- We calculated **billions of nodes** with the bottom-up approach in half-an-hour!

Category	Value	Category	Value
Prefix Index Size	63,803	SameAs Triples	13,158,621
Unique Real World Objects	141,269,960	SameAs Catalog Size	18,789,593
Element Index Size (<i>rwo</i>)	6,242,344	SameAs Triples Inferred	$19,\!450,\!107$
Element Index Size (URIs)	17,840,499	Pairs sharing at least 1 real world object	6,708
Asks Number	6,684,242	New Pairs discovered due to SameAs Alg.	2,393
rwo in 3 or more D_i	3,293,248	Triads sharing at least 1 real world object	74,432
URIs corresponding to rwo in 3 or more D_i	12,296,650	New Triads discovered due to SameAs Alg.	48,658
Num. of Lattice Nodes (threshold > 30)	130.525.631	SameAs Unique IDs	6,218,958
Num. of Lattice Nodes (threshold ≥ 20)	$1,\!541,\!968,\!012$	· · ·	, ,

FORTH, ISL, Hellas

LOD Cloud Experiments - Most Connected Subsets


- The triad of the popular Cross domain Datasets shares 2.7 millions of real world objects (rwo)!
- The **quad** of the four popular cross domain datasets share **1.4 millions of rwo**.
- Most connected triads contain cross domain and geographical datasets!
- **Check** the **paper** for finding more experiments.

Datasets of subset B	$co_{\sim}(B)$
1: {DBpedia,Freebase,Yago}	2,709,171
2: {DBpedia,Freebase,Wikidata}	1,950,319
3: {DBpedia,Yago,Wikidata}	$1,\!435,\!713$
4: {Yago,Freebase,Wikidata}	$1,\!434,\!407$
$5: {DBpedia, Yago, Freebase, Wikidata}$	$1,\!434,\!404$
$6: \{ DBpedia, GADM, Freebase \}$	107,968
7: $\{DBpedia, GeoNames, Freebase\}$	98,985
8: {DBpedia,GADM,Wikidata}	96,968
9: $\{GADM, Freebase, Wikidata\}$	96,968
10: ${DBpedia, GADM, Freebase, Wikidata}$	96,968

Top-10 Subsets \geq 3 with the most common rwo

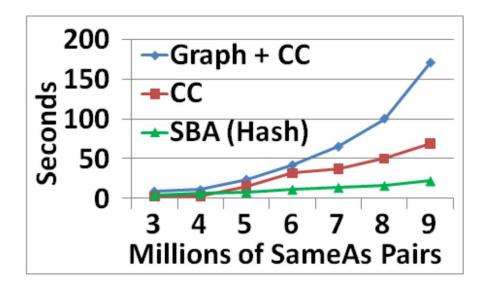
Dataset D_i	<i>rwo</i> in $\geq 3 D_i$	(% of $D_i rwo$)
DBpedia	3,246,415	17.3%
Freebase Cross-	3,237,604	11.3%
Yago Domain	2,712,930	48.0%
Wikidata	1,952,222	7.3%
GADM Geovocab Geo	108,503	9.4%
GeoNames	102,747	0.4%
d-nb.info Pub	65,076	4.2%
LinkedGeoData (LGD)	43,265	0.6%
Opencyc	34,313	26%
LMDB Media	30,225	2.3%

Top-10 datasets with the most rwo existing at least in 3 datasets

FORTH, ISL, Hellas

Comparative Results – Prefix Index

- 89 % of distinct prefixes exist in 1 Dataset!
- However it concerns only the 10.8% of URIs
 - 16,689,866 URIs ignored
- 11 % of prefixes concern the 89.2% of URIS
 - Few prefixes are very popular!!
- We send 6.68 Million ASK queries
 - 1 ASK query per 19 URIs having a prefix that can be found in two or more datasets
 - The optimized sequence was the key point for the above number!!

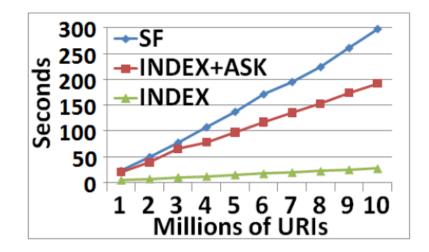

http://en.wikipedia.org http://rdf.freebase.com http://wikidata.org

http://dbpedia.org

http://yago-knowledge.org

Comparative Results – *SameAs Catalog*

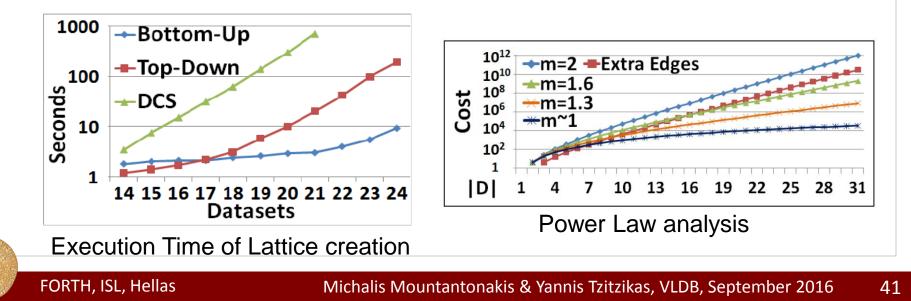
- The signature-based Algorithm is always faster than the Tarjan's algorithm[7] plus the creation of Graph!
- It was infeasible to load in memory the graph for more than 10 million pairs
- The SBA algorithm computed the closure of more than 13 million pairs in 45 seconds!!


Comparative Results-Index vs Straightforward method

Here we compare the index approaches with the straightforward (**SF**) method with data that fit in memory!

- Index Approach (without ASK queries) is always faster.
- Time of **SF** method increases exponentially as dataset grows and linearly as URIs grows.
- Index Approach with ASK Queries increases linearly when URI grows.

Comparison of different approaches Varying number of Datasets



Comparison with stable |D| = 17 Varying number of URIs

Comparative Results – *Lattice Algorithms*

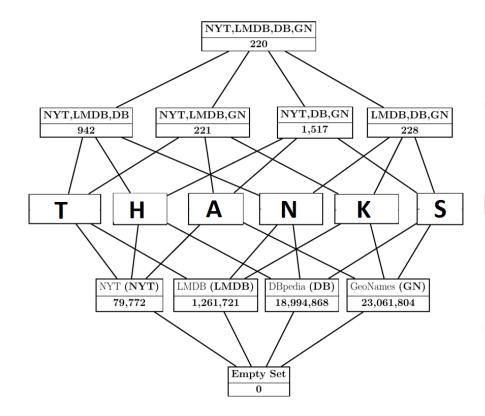
We compare the performance of the lattice incremental algorithms and the directCount scan approach (**dcs**).

- Size of directCounts list: 1,000 nodes (from 4,000,000 real world objects).
- Both incremental approaches are **always** faster than the **dcs** approach.
- For 17 or more datasets (like in our power-law analysis), bottom-up approach is faster than the top-down.
- For more than 24 datasets, it was infeasible to run top-down algorithm while with the bottom-up we can compute more than 1 billion nodes in 30 minutes!

Our Website: LODsyndesis - Data Discovery & Entity Lookup

Number	Query		
Query 1	Give me the top-K most connected datasets to my dataset	Dataset Discovery	
Query 2	Give me all the connected sources with FishBase, and how many URIs these datasets share with datasets from the geographical domain	LifeScience Cross Geogra	aphical
Query 3	Give me all pairs of sources that were not connected, but now they are con- nected due to closure and the number of their common RWO	Domain	
Query 4	Give me the increase of the commonalities of all pairs of sources due to closure in descending order	FishBase	eoNames
Query 5	Give me the K datasets that maximize the pluralism factor of the entities in my dataset	Freebase	
Query 6	Give me the connected triads from datasets coming from three different do- mains	Give me Triads from three different	domains
Number	Query	Object Coreference	
Query 7	Give me all the datasets that contain information about http://dbpedia.org/resource/Aristotle		
Onema 9			A CONTRACTOR OF
Query 8	Give me all the equivalent URIs of http://dbpedia.org/resource/Aristotle	Publications	2
Query 8 Query 9	Give me all the datasets from the publication domain containing information		The second
Query 9	Give me all the datasets from the publication domain containing information about yago:Socrates	Publications For	1
Query 9 Query 10	Give me all the datasets from the publication domain containing information		
Query 9	Give me all the datasets from the publication domain containing information about yago:Socrates Give me all the URIs that are equivalent with the URIs of my dataset		crates
Query 9 Query 10 Query 11 Query 12	Give me all the datasets from the publication domain containing information about yago:Socrates Give me all the URIs that are equivalent with the URIs of my dataset Give me the datasets that contain information for both Aristotle and Socrates Give me all the common RWO between Wikidata, DBpedia and Yago	Give me Datasets For Yago:So	crates
Query 9 Query 10 Query 11 Query 12	Give me all the datasets from the publication domain containing information about yago:Socrates Give me all the URIs that are equivalent with the URIs of my dataset Give me the datasets that contain information for both Aristotle and Socrates	Give me Datasets For Yago:So	crates

- It contains:
 - A link to **datahub** where we published the results
 - A link to a 3D Visualization: <u>www.ics.forth.gr/isl/3DLod/</u>
 - A list of Answerable Queries and a link to an active SPARQL Endpoint


Conclusion

- □ We introduced indexes and algorithms for
 - Assessing the degree of connectivity of two or more sources
 - Obtaining information about a particular entity
 - Discovering relevant datasets
 - Visualizing the degree of connectivity of two or more sources
- We reported measurements that have never been carried out in the past
- We discussed the **speedup** obtained by the proposed indexes & algorithms
- We introduced novel systems that exploits the proposed measurements.

Future Work

- Generalize the lattice based approach for other RDF Features
 - E.g., Literals, Triples
- Parallelize the approach by using Map Reduce Techniques for
 - investigating the **speedup** that can be achieved
 - running the experiments for
 - Billions of Triples, URIs & Literals
 - More **sameAs** relationships
 - Even more datasets (identically for the whole LOD Cloud)
- Exploit the measurements for better visualizations and monitoring services

Thank you!

Questions

Acknowledgements

This work was partially supported by:

References

[1] Laurens Rietveld, Wouter Beek, and Stefan Schlobach. Lod lab: Experiments at lod scale. In Proceedings of the International Semantic Web Conference (ISWC). Springer, 2015

[2] Markus Nentwig, Tommaso Soru, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm. Linklion: A link repository for the web of data. In The Semantic Web: ESWC 2014 Satellite Events, pages 439–443. Springer, 2014.

[3] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for querying graph structured data from the web. In ISWC, volume 4825, pages 211–224, 2007.

[4] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs. Swoogle: a search and metadata engine for the semantic web. In Proceedings of CIKM, pages 652–659, 2004.

[5] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data. The VLDB Journal, 19(1):91–113, 2010.

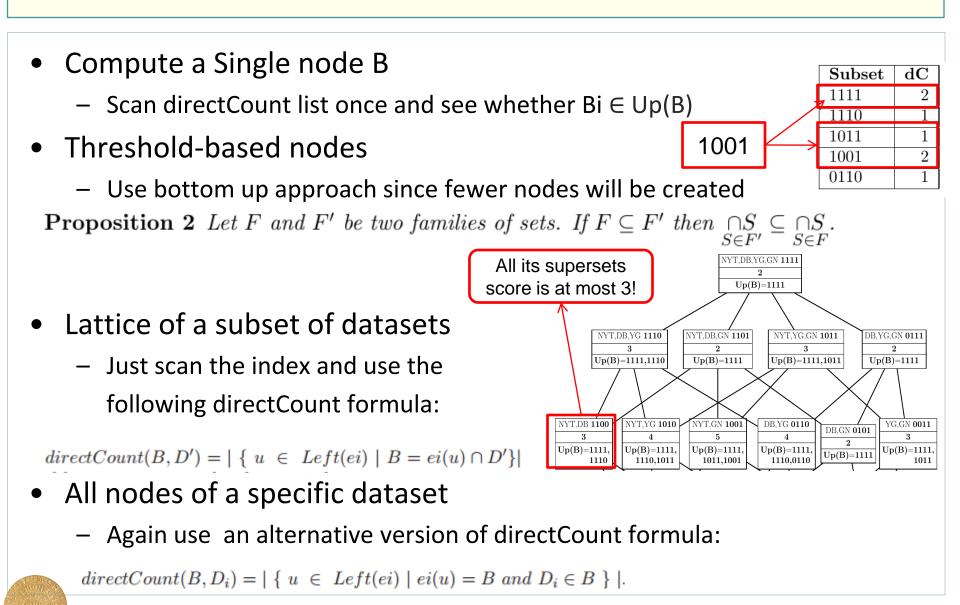
[6]] E. Prud' Hommeaux, A. Seaborne, et al. SPARQL query language for RDF. W3C recommendation, 15, 2008.

[7] Robert Tarjan. Depth-first search and linear graph algorithms. In Twelfth Annual Symposium on Switching and Automata Theory, pages 114–121. IEEE, 1971.

Links To Our Tools & Services

- LODsyndesis: <u>http://www.ics.forth.gr/isl/LODsyndesis/</u>
- Datahub: <u>https://datahub.io/dataset/connectivity-of-lod-datasets</u>
- Demo Queries: <u>http://62.217.127.118:8890/fct/demo_queries.vsp</u>
- SPARQL Endpoint for Metrics: http://62.217.127.118:8890/sparql
- *3DLod*: <u>www.ics.forth.gr/isl/3DLod/</u>

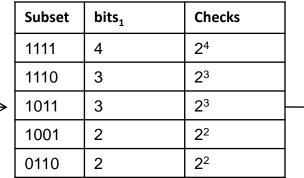
Top-Down Algorithm (BFS Traversal)-Analysis


- We avoid passing from nodes having score=0.
 - We can start from the maximum level having a node with score>0.
 - We can create nodes only when their |Up(B)|>0
- Time complexity is O(V+E)
 - It passes from all nodes having intersection value bigger than zero
 - |V|=2^{|D|}
 - It creates all the edges E where
 - |E|=|D|*2^(|D|-1)

• Space Complexity is O(V_k)

- It keeps in memory all the nodes of a specific level since the traversal is BFS
- k: a lattice level (e.g., pairs, triads, etc.)

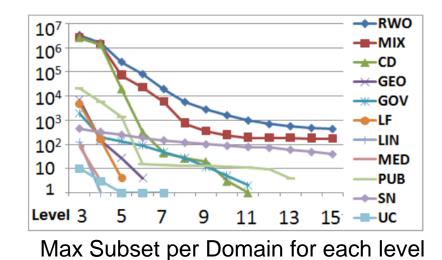
-
$$\mathbf{V}_{\mathbf{k}} = \begin{pmatrix} |\mathbf{D}| \\ \mathbf{k} \end{pmatrix} = \frac{|D|!}{k!(|D|-k)!}$$


How to Compute Specific Parts of Lattice

Bottom Up Algorithm Analysis

- We avoid passing from nodes having score=0.
 - When the score of a subset is 0, then the score of all its supersets is 0, too.
- Time complexity is O(V)
 - Passes from all nodes having intersection value bigger than zero: $|V|=2^{|D|}$
 - Creates one edge per node : |E|=|V|
- Space Complexity is O(d)
 - Follows a Depth First Search (DFS) Traversal
 - d: the diameter of the lattice (d is at most |D|)
- Additional CheckCost: However, we should check each time which of the Up(B) belong to Up(B'). For a subset B_i, that belongs in directCount list:

C:size	Subset	dC
of list	1111	2
	1110	1
0.1 % of	1011	1
Element	1001	2
Index Size	0110	1
2 Martin Contraction of the Cont		


checkCost

51

FORTH, ISL, Hellas

LOD Cloud Experiments- Biggest Hubs

- Which are the biggest hubs in LOD Cloud?
 - Cross Domain Datasets are the most popular.
 - Geographical and Publications datasets follow.
 - Most connected domains:
 - Levels 3-6: cross-domain
 - Levels 7-15: social networking domain
 - 15 datasets share more than 100 rwo!

FORTH, ISL, Hellas