
 Electronic copy available at: http://ssrn.com/abstract=2626521

Beyond the Experiment:

the eXtendable Legal Link eXtractor
Marc van Opijnen

Publications Office of the Netherlands

marc.opijnen@koop.overheid.nl

Nico Verwer
Rakensi

nverwer@rakensi.com

Jan Meijer
Importalis

jmeijer@importalis.com

ABSTRACT

In this paper we describe a software framework for detecting and

resolving references to (national and EU) legislation, case law,

parliamentary documents and official gazettes. Meant to function

in a large-scale production environment, performance, flexibility

and maintainability are essential requirements. This led us to some

noteworthy choices: within the pipeline architecture of Apache

Cocoon we use the trie data structure for named entity recognition

and a parsing expression grammar for pattern recognition, the

latter having significant advantages over the use of regular

expressions. Additional attention is paid to some substantive

maintainability issues.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Processing –

language parsing and understanding, text analysis.

General Terms

Algorithms, Management, Performance, Design, Reliability,

Human Factors, Standardization, Languages.

Keywords

Legal semantic web. Natural Language Processing. Parsing

expression grammar. Pipeline processing.

1. INTRODUCTION
The growing public availability of legal documents is a positive

development. Under influence of the (amended) EU directive on

Public Sector Information1 and the G8 Open Data Charter2

gradually more resources are becoming available as open data as

well. However, while increasingly in structured and machine

processable formats, the published information generally lacks

machine processable links to other (legal) sources.

Within the Netherlands government it is recognized that the

publication of essential legal sources like consolidated legislation,

important judicial decisions and parliamentary documents in itself

is not enough to cater for the information needs of both the public

sector itself and the citizens. Interlinking legal sources was

considered to be an important prerequisite for improving

governmental efficiency and effective knowledge management.

Hence, a project for ‘Linked Governmental Data’ (Dutch

abbreviation: ‘LiDO’) was initiated: based on semantic web

technologies repositories from various governmental institutions

1 Directive 2013/37/EU of the European Parliament and of the

Council of 26 June 2013 amending Directive 2003/98/EC on

the re-use of public sector information (CELEX: 32013L0037)

2 https://www.gov.uk/government/publications/open-data-charter/

g8-open-data-charter-and-technical-annex.

are collected, with the goal of providing insight into the relations

between legislation and other public legal documents.

Although the number of documents collected is starting to be

impressive, the available links are mainly those already available

in the formal metadata. The number of additional – editorial –

links is quite limited, while exactly those are having great

additional value. Just making explicit all those textual links that

are currently not computer readable would give real added value.

Since human tagging of the more than a million documents

available is far too costly, automated extraction of references is

the only viable alternative.

Quite some research has already been done on legal reference

parsing, most of it in an academic or experimental setting. One of

the most elaborated projects on linking Dutch legal data has been

realised within the framework of the research on a Model for

Automated Rating of Case Law [1, 2]. Although the

functionalities built within this research project were quite

extensive, the software was developed with the purpose of

populating a research database just once, and not to serve as a

production environment. Performance could clearly be improved,

the software was not maintainable, and was not designed for a

linked data environment. Our mission therefore was to completely

redesign and rebuild the technical framework of this link extractor

and to extend its capabilities, while at the same time reusing its

intelligence for the proper recognition of legal references.

We will start with listing the most important requirements for this

redesign (§ 2). In § 3 we will discuss the main components. After

explaining the choice of framework (§ 3.1) specific attention will

be paid to the choice of the trie data structure for named entity

recognition (§ 3.2) and a parsing expression grammar – instead of

regular expressions – for pattern recognition (§ 3.4). In § 4 some

challenges are discussed which are of particular relevance when

deploying a link extractor in a production environment, like the

use of external reference repositories and changing standards for

identification and citing of legal sources – illustrated with some

examples from the European domain.. In § 5 some conclusions

are drawn.

Our eXtendable Legal Link eXtractor (hereinafter also referred to

as ‘xLLx’) was designed for use on Dutch texts, recognizing links

to both national and EU sources. It could be used on other

languages as well though. All code examples in this paper have

been translated into English.

2. BASIC REQUIREMENTS
Our requirements can be grouped under four headings: a flexible

and extendable architecture, stability and performance,

maintainability, and finally a broad variety of links to be detected.

The flexibility needed in the architecture relates to several aspects.

Two important tasks are the recognition of named entities and

pattern matching. Specific functions like normalization,

disambiguation, canonicalization should be easy to integrate.

 Electronic copy available at: http://ssrn.com/abstract=2626521

Since we depend on both internal and external reference

repositories for named entities, metadata and URIs, a seamless

integration of, and connection to these repositories is essential. Of

course xLLx must be made available as a service, and the API

must cater for a variety of user needs, like defining the type of

links to be recognized (e.g. just to legislation, case law or

parliamentary documents), or to define instructions which are

relevant for specific documents only. And pre-processing and

post-processing should of course be easily configurable.

Regarding performance it should be mentioned that the number of

named entities to be recognized is around 200.000, while the

number of patterns to be recognized might be quite limitless. Of

course performance is dependent upon hardware, but as a rule of

thumb the hardware requirements should not be substantially

influenced by the complexity of the patterns or the number of

named entities to be recognized. Proven technology and a scalable

architecture are also obvious requirements.

The third requirement concerns the maintainability of the

software, more specifically the functional part of it. Apart from

general rules regarding the use of non-proprietary software, the

availability of unit tests, limiting the lines of code and proper

documentation, natural language processing software that has to

recognize extremely complex strings – like legal references – runs

the risk of become overly complex by a lack of modularity and

long and hence unstable pattern matching code. As some

examples in § 4.2 will demonstrate, citation instructions and

habits change, as do reference repositories and the structure of

input documents. These changes require domain specific

knowledge, and making changes and adding new functionalities

must be doable even after the architect and the main developers

have left the scene.

The final requirement is of a functional nature: it concerns the

types of links to be detected and resolved. In [1, 2] links to

(national and EU) legislation and case law were detected, xLLx

should also be able to detect references to parliamentary

documents and publications in official gazettes, of which there are

seven different types in the Netherlands.

3. MAIN COMPONENTS

3.1 Pipeline Architecture
For natural language processing various frameworks are in use,

also within the legal domain [3]. The most important of these

platforms have been reviewed by us, but for various reasons they

were not considered fit, especially since they lack the flexibility

and adaptability needed for the very specific task of legal

reference parsing.

A first choice was to use Apache Cocoon, an XML processing

framework based on the concepts of pipelines, separation of

concerns and components. We already had Cocoon running in our

linked data architecture, and this was therefore considered with

priority. It’s simplicity of concept but at the same time enormous

flexibility and extendibility made it a sensible choice.

Within Cocoon a ‘pipeline’ can be defined as a series of linked

‘components’ that can generate, transform and serialize XML

content. A ‘sitemap’ specifies the pipelines for a specific type of

request. As a result, components can be used within different

pipelines. The Cocoon pipeline architecture is extremely flexible,

making it possible to apply all kinds of logic and (XSLT)

transformations.

Within our linked data framework xLLx is configured as a

service, and makes use of other RESTful services, mainly to

connect to reference repositories. These repositories are built

outside xLLx, but are using the same Cocoon architecture for

collecting, transforming and storing content from internal and

remote sources.

In this paper we cannot discuss the whole pipeline architecture

and all of its components. We limit ourselves to describing the

main components in the pipeline for detecting and resolving

references to national legislation, many of which are also used in

other pipelines – therefore on some occasions examples from

other pipelines are used for illustration. In § 3.6.3 a remarkable

component from another pipeline is discussed.

Input document

↓

Conversion, fragment selection

The document is converted into XML. Optionally, dependent

upon parameters on the input document, specific parts which

are relevant for detecting legal links are marked.

↓

Named entity recognition (§ 3.2)

↓

Local alias detection (§ 3.3)

↓

Local aliases to named entities (§ 3.3)

↓

Parser for reference recognition (§ 3.4)

↓

False positive removal (§ 3.5)

↓

Civil code resolver (§ 3.6.1)

↓

Resolving multiple references (§ 3.6.2)

↓

Link generator (§ 3.7)

↓

Post-processing, conversion

Creating in-document links, metadata or both. Conversion into

RDF, XML, XHTML, and so on.

↓

Output document

Figure 1. Schematic display of pipeline for detecting and

resolving references to national legislation.

Figure 1 shows a schematic display of the pipeline. If a

component needs detailed explanation there is a reference to the

relevant paragraph.

One could observe there is no component for human editing.

Since xLLx is meant for completely automated high volume

processing a component for human editing is not essential for the

pipeline. If needed it can be added easily. Moreover, it should be

noted that many components are configured to help a human

editor by throwing ‘resolve manual’ errors: they indicate that a

link probably has been detected but that the exact reference

cannot be established.

3.2 Named Entity Recognition

3.2.1 Introduction
Named entity recognition (NER) is one of the hardest problems to

tackle in natural language processing [5]. Deviating a little from

the general theory and tailored to the legal domain, we distinguish

between ‘named entities’ and ‘patterns’. Named entities are single

names that identify a legal resource, like official and non-official

titles (including abbreviations). Patterns are strings that (might) be

a reference because of their specific structure.

The relevance of being able to make a distinction between the two

can be illustrated by the following example. An author might

make a reference using the title of an EU directive, reading:

“Commission Directive 2014/110/EU of 17 December 2014

amending Directive 2004/33/EC as regards temporary deferral

criteria for donors of allogeneic blood donations”. If a parser is

only trained to detect patterns of EU directives, it will recognize

both ‘Directive 2014/110/EU’ and ‘Directive 2004/33/EC’.

Linking to both these directives though was not intended by the

author; he only wanted to refer to the first one, contrary to a

situation in which he writes: “The substantive provisions of

Directive 2004/33/EC were not affected by its amendment by

Directive 2014/110/EU.”

From this example it follows that we should first detect named

entities, and subsequently look for patterns. Hence, a pattern that

is a part of a named entity is not recognized as a pattern but only

as (part of) the named entity. We have to be aware though that it

can also be the other way around: a named entity being part of a

pattern. The abbreviation ‘RVS’ stands for ‘Law on the Council

of State’ and as such is a named entity. But ‘RVS’ can also be

part of a European Case Law Identifier (ECLI),3 identifying a

judicial decision of the Council, as in: ECLI:NL:RVS:2015:985.

In such a situation the pattern should take precedence over the

named entity.

Given the fact that the number of EU legal acts is well over a

hundred thousand, and for national legislation it is in the tens of

thousands, it is obvious that machine learning (e.g. by fuzzy

matching) might easily lead to a disappointing precision.

Because on citing full titles – like in our first example – are often

literally copied from a reference source, NER can be used to

detect them, but when shorthand notations are used or references

to e.g. paragraphs of law are made, we have to use pattern

recognition instead. To stick to the example: chances are the

author doesn’t cite with ‘Directive 2004/33/EC’, but by ‘Dir.

2004/33’, ‘EC directive 2004-33’ or one of many other possible

3 Infra,§ 3.6.3.

variants – unfortunately the creativity of lawyers in circumventing

citation guidelines is sheer unbounded.

3.2.2 Trie Data structure
Many packages for entity recognition are based on data structures

like trees, arrays or linked lists. These work well if the strings to

be recognized are relatively small in length and volume. Our set

though is quite voluminous: it contains already more than 200.000

strings: all titles of secondary EU legislation (the sectors 2, 3 and

4 from EUR-Lex), all titles from the consolidated legislation

database of the Netherlands, and some thousands of commonly

used aliases for both European and national legislation and case

law. Apart from the number of strings to be recognized, the

strings are quite lengthy, as the example of the EU Commission

directive above shows.

After having tried various parsers, we ended up with a trie-

implementation. Trie is a somewhat neglected or misunderstood

data structure that is well fit to solve problems like ours [6]. It is

extremely powerful: its performance only depends on the length

of the prefix substring shared by at least two entities and not on

the size of the vocabulary.

For optimal performance the whole (multidimensional) tree has to

be loaded in memory, but because of the compression inherent in

a trie this does not require exceptional hardware.

The package used needed some adjustments for natural language

processing: it had to be made UTF-8 compliant to replace

diacritics by their non-diacritic version and expand ligatures and

digraphs; using only ASCII and removing all whitespace and

punctuation marks made NER immune to common variations in

spelling and further sped up performance. It had to be wrapped to

function in a Cocoon pipeline and from a functional point of view

it had to be extended to return not the string matched, but the URI

that belongs to that string (e.g. the CELEX number for a

European directive). And while trie normally works either case-

sensitive or case-insensitive, we had to tune it to work case-

sensitive for strings up to (in our case) six characters, and case-

insensitive for longer strings. The reason for this being that casing

must be ignored in long titles since casing errors are often made,

while for (short) abbreviations there are differences in meaning

between uppercase, lowercase and mixed case variations, while

there is also the risk of the abbreviation coinciding, though in

another casing, with common words.

By default trie takes the longest possible match, but needless to

say that’s exactly the functionality we want. When we parse a text

referring to the judicial decision ‘Rensing/Polak II’, trie should

not match it on the case ‘Rensing/Polak I’, but only on

‘Rensing/Polak II’.

For populating the data tree we use the already mentioned

sources. Caution is needed though: they contain names that are

not only titles of legislation, but might also quite commonly

appear as common words. As an example from the EU domain

CELEX:32015D0213(01) could serve: it has as its title (just)

“Decision” (as many other records in EUR-Lex). Since this would

lead to false positives in any situation where the word ‘Decision’

is used in a processed text, we created an ‘exception list’: entries

from internal and external resources that have to be prevented

from being included in the trie dataset. Although one could

consider more sophisticated solutions, the best alternative for now

is to have the delta in the reference repositories checked by an

editor before they are inserted into the collection.

3.3 Local Aliases
As already touched upon in § 3.2 lawyers often use aliases for

referring to well-known laws or judicial decisions. Since these

aliases are shared within the legal community we call them ‘global

aliases’. They can be recognized as named entities. Apart from

these global aliases also local aliases are used. Like variables in

software code they are declared on first use, and they don’t have

any value outside the document in which they are declared.

Declaration often takes the form: “the European Convention on

Human Right and Fundamental Freedoms (hereinafter ‘the

Convention’).” When two pages further a reference is made to

“article 6 of the Convention”, ‘the Convention’ – the local alias –

is immediately understood by the human reader.

To achieve the same understanding of the text two components

were introduced in xLLx. The component ‘local alias detection’

searches for local aliases after each named entity found, and the

component ‘local aliases to named entities’ detects other

occurrences of the local aliases found and tags them accordingly.

3.4 Pattern Recognition: Parsing Expression

Grammar
Legal references not using the official or non-official title of a

legal document have very specific formats. Although citation

guides exist and are often followed, deviations from these semi-

formal guidelines are the rule rather than the exception. This can

be illustrated by the analysis of Dutch, German and British

judicial decisions, that yielded tens of different formats for citing

EU regulations and directives [7].

For a link extractor to function properly all these variations have

to be captured. Regular expressions (‘regexes’) are a commonly

used technique to tackle this problem, e.g. used in [4, 7, 8, 9, 10].

Although they are well fit for recognizing credit card numbers or

dates, regexes have some serious drawbacks when it comes to

recognizing legal references in a large-scale environment.

Firstly, regular expressions nowadays often extend the original

regex formalism with features like look-aheads and greedy or lazy

repetitions. These extensions not only lack a formal standard and

therefore have different implementations in various programming

languages, but they are difficult – i.e. time-consuming – to

develop and even harder to maintain. For time- and scope-limited

academic research – like most of the works cited above, where

only a limited set of references is to be detected or a limited

number of documents processed – this is no serious objection, but

when implemented in a production environment ten or twenty

lines of regexes become extremely hard to maintain.

Secondly, in complex implementations, the use of long regexes

can seriously slow down performance, especially when using

functionalities like backtracking.[11]

The third reason is of a more fundamental nature: regexes cannot

solve the problem of ambiguity easily. But when it comes to legal

references we want to exclude ambiguity as much as possible. As

an illustration we use the way Dutch parliamentary documents are

identified and can be cited.

Although in reality it’s a little more complex, for our purposes we

can simplify it as follows. Every document identifier starts with a

dossier code (identifying e.g. the set of documents eferring to a

specific legislative proposal), written in five digits. Optionally it

can have a dossier subcode attached – used mainly for budget

proposals – separated from the dossier code by a hyphen and

written in Roman numerals, but other capitals exits. Finally it has

a sequence number in digits, indicating the serial number within

the dossier, preceded by ‘nr’. Sometimes though the sequence

number is written in capital letters.

So, ideally a document number looks likes:

 12345 nr 6

 12345 nr AA

 12345-IV nr 5

We can capture this properly with a regex like:

[1-9][0-9]{4} \s nr \s [A-Z]{1,5}

|

[1-9][0-9]{4} (-[A-Z]{1,5})? \s nr \s [1-9][0-9]?

The problems start with poor citations: often ‘nr’ is left out or the

hyphen between the dossier code and the dossier subcode is

replaced by whitespace or just left out.

To cater for these possibilities we have to re-write our regex, e.g.:

[1-9][0-9]{4} (\s (nr \s)? [A-Z]{1,5} |

 ((-|\s)?[A-Z]{1,5})? \s (nr \s)? [1-9][0-9]?)

Although many citations are recognized correctly, we have a

problem with: ‘12345 IV nr 5’. Only ‘12345 IV’ will be detected,

which is not an existing document number. The solution would be

not to allow the whitespace between dossier code and the

subcode, but then we wouldn’t recognize 12345 AA, a notation

that is commonly used in case ‘AA’ is the sequence number.

We came across many of such problematic ambiguities. In theory,

these problems could be solved with regular expressions, using

many repeated parts and many nested alternatives. The result

quickly becomes unwieldy and prone to subtle errors. In

conjunction with the first two drawbacks of using regexes we

decided to exchange regexes for a parsing expression grammar.

A parsing expression grammar (PEG) is a formalized machine-

oriented syntax introduced by Bryan Ford in 2004 [12]. It differs

from context-free grammars (CFGs) in its ability to eliminate

ambiguity. Instead of an unordered choice operator (‘|’) as used by

CFGs, a PEG uses a prioritized choice: alternative patterns are

tested in order. Generally, because of their ability to cope with

ambiguity, CFGs are often considered to be better suited for

natural language processing [12] than PEGs, but for references

from the legal domain the non-ambiguity is an advantage rather

than a drawback, and its – implicit – longest match recognition

capability makes a PEG the better choice.

Using a formalized grammar like PEG offers more advantages,

like modularization of patterns in ‘non-terminals’ by which parse-

trees are constructed. As a result development is faster and less

error-prone. The code is more human readable and can be

documented better, which improves maintainability. Because of

the abstract syntax tree (AST) in which the grammar returns its

results, all recognized strings can be reused easily in the next step

of a pipeline.

In the following we demonstrate how a PEG can solve the

abovementioned problem, at the same time illustrating the charm

of modularization.

First some PEG basics. A grammar consists of a set of rule

definitions, the already mentioned ‘non-terminals’. They specify

in a formalized way (small) strings of text that have to be

recognized. Non-terminals are defined in three parts: a name, a

rule type and some grammar expressions.

The non-terminal for the parliamentary dossier code from our

earlier example is of the most common rule type, the ‘tree

constructing type’ (written as ‘<-‘). We name it ‘DosCode’. It

reads:

DosCode

 <-

 [1-9] [0-9] [0-9] [0-9] [0-9]

In our example we only use this tree constructing type; so we will

not discuss other types. The grammar expressions look very much

like regular expressions, with two important syntactic differences:

modifiers (like ‘?’ for optionality) are written before and not after

the grammar expression, and literal strings are within single (case-

sensitive) or double (case-insensitive) quotes. A non-quoted string

is a reference to another non-terminal.

Given the citation guidelines and the common aberrations, we can

construct some other basic non-terminals for parliamentary

documents. The non-terminal ‘sp’ stands for whitespace.

For the dossier subcode:

DosSubCode

 <-

 [A-Z] ?[A-Z] ?[A-Z] ?[A-Z] ?[A-Z]

For the separation between the dossier code and the dossier

subcode we can write the following (note that only the optionality

of the comma is defined here, not the optionality of the separator

as such):

DosSeparator

 <-

 ?’,’ sp | ’-’

To define the serial number:

DocSerial

 <-

 [1-9] ?[0-9]

 |

 [A-Z] ?[A-Z] ?[A-Z] ?[A-Z] ?[A-Z]

And finally, to define the label for the serial number:

SerialLabel

 <-

 (“nr” sp)

Now we can use these non-terminals to construct a non-terminal

for the whole reference:

ParliamentaryDoc

 <-

DosCode ?(?DosSeparator DosSubCode) sp ?SerialLabel

DocSerial

Although this code already demonstrates the advantages of a PEG

regarding modularity, human readability and flexibility, we still

have the same problems as with the regex: ‘12345 IV nr 5’will be

recognized, but ‘12345 AA’ will be understood as a dossier

(where ‘AA’ is the dossier subcode) and not as a dossier code +

document number.

To solve this we have to utilize the prioritized choice,

fundamental to a PEG:

DosCode ?DosSeparator DosSubcode sp ?SerialLabel

DocSerial

|

DosCode sp ?SerialLabel DocSerial

The prioritized choice means that as soon as an alternative gives a

match, it doesn’t look for other alternatives. For that reason we

have to place the longest possible match on the first position. If

we parse ‘12345 IV nr 5’ it will be tested against the first

alternative, with all elements matched to the correct non-

terminals. ‘12345 AA’ doesn’t match the first alternative, since it

would need both a dossier subcode and a document number. It is

matched against the second alternative though, with ‘AA’

correctly identified as the document sequence number.

For implementing a PEG we choose the Waxeye parser generator,

which could be integrated seamlessly in Cocoon. PEG is not only

used to detect main entities – like references to European

directives – but also to detect more granular references, connected

to main entities – whether being detected as named entity or as a

pattern – e.g. to chapters, articles and paragraphs. Altogether,

more than 1700 lines of grammar (including comments) were

written for the recognition of various types of references and for

canonicalization (see § 3.6.3). The result has proven to be very

readable and maintainable, even by non-programmers.

3.5 False Positive Removal
False positives occur, most commonly when an abbreviation of a

law or regulation equals something completely different in the

document processed, e.g. a broadcasting company, the initials of a

barrister or the code of a referenced case file. Without context

analysis the difference is hard to tell, but the occurrence of such

false positives can be drastically reduced by removing all string

matches of up to six letters (being abbreviations) if they are not

accompanied by a more granular reference, e.g. to a specific

article or paragraph. An exception to the latter restriction is made

for situations where such an abbreviation is defined as a local

alias: we can assume that the author of the parsed document

wouldn’t introduce ambiguity himself.

3.6 Content Specific Components
Although not all pipelines use all components described in the

previous paragraphs, they are of a general nature. In some

pipelines very specific components are used, tailored to particular

needs. We will not list all of them, but just give some examples.

In § 3.6.3 we describe a specific component for resolving

references to case law, but first we discuss two specific

components from the legislative references pipeline: the civil code

resolver (§ 3.6.1) and the resolver for multiple references

(§ 3.6.2).

3.6.1 Civil Code Resolver
The Dutch Civil Code contains ten ‘books’. In the legislation

database all these books have a separate identifier, and

consequently they would only be recognized in the NER

component by their titles: ‘Civil Code Book 1’ and so on.

Unfortunately though, if a lawyer makes a reference to article 269

of this first book, he usually writes: “Art. 1:269 Civil Code” or

something comparable: the book identifier is part of the article

reference and not of the main entity. To solve this issue the NER

component does recognize ‘Civil Code’ as such, but does not

return an identifier, since the title is ambiguous. In this

component we disambiguate the title – by using the first digit in

the article number, or resolving other styles used to indicate the

book – and rewrite the article reference to ‘269’ to construct a

valid URI. In some references the specific book isn’t mentioned –

erroneously or because the author assumes the reader understands

it within the given context – in which case the component throws

a ‘resolve manual’.

3.6.2 Resolving Multiple References
This component resolves multiple references, like in: “Articles 2,

3 and 9 to 13 of regulation XYZ”. Five visual links are created –

the four articles mentioned and the regulation itself – but also

three extra hidden links – to the articles 10, 11 and 12.

Improvements though are still possible: currently there is no

check against the repository on the specific articles in the range

mentioned. So, if an article 11a exists, we would miss it.

Next to such sibling references this component also resolves

hierarchical references like: ‘Part 3 of chapter 3’. The nesting is

relevant, since also chapter 6 might contain a ‘part 3’. The

information from this component is used for the link generation

described in § 3.7.

3.6.3 Canonicalizing Complex Case Law Citations
As demonstrated in the previous paragraphs, references to

legislation can be quite complex, but apart from the mostly well-

defined occurrence of local aliases, citations are singular in the

sense that only one entity is used to refer to a source.

As in many other jurisdictions, in the Netherlands case law

references are much more complex: a judicial decision can be

cited by one or more references to nearly a hundred different case

law periodicals, the (rather form-free) case number (in

combination with the name of the court and the date of judgment),

the national case law identifier (‘LJN’) which in June 2013 is

replaced by the European Case Law Identifier (ECLI),4 or a

combination of some or all of them. The ‘canonicalization’

process needed to solve this puzzle has been described extensively

in [8]. To summarize: all elements that could be part of case law

citation are detected, normalized and canonicalized to an

overarching identifier by using a register that contains all case

numbers, parallel citations and case law identifiers (LJN and

ECLI).

Reusing the algorithms of [8] the code was completely redesigned

and some functionality added. Apart from the recognition of ECLI

and using it as the canonicalized identifier (instead of its national

predecessor), we also added the recognition of the often cited

opinion of the advocate-general, which functions both at the

Dutch Supreme Court as well as at the Court of Justice of the

European Union (CoJ).

This can be illustrated by the following text fragment, in which

the links are constructed by xLLx:

4 Council conclusions inviting the introduction of the European

Case Law Identifier (ECLI) and a minimum set of uniform

metadata for case law (CELEX:52011XG0429(01)). See also

[13].

We should compare this to the theory described in the

opinion of Kokott in Case C-231/05, Court of Justice,

18 July 2007 (Reports 2007 I-06373).

The first link leads to the opinion (ECLI:EU:C:2006:551), the

second to the judgment (ECLI:EU:C:2007:439). Strictly speaking

the reference to the judgment itself is – in this specific sentence –

a false positive, since the author of this text only referred to the

judgment to identify the opinion.

Also the ‘Reports’ number used in this citation is noteworthy.

Apart from the fact that many spelling variants are used by

authors and hence it is hard to detect properly, it is in itself

ambiguous because it identifies both opinion and judgment, which

– as shown – both have their own ECLI. The xLLx

canonicalization component defaults to the judgment; if the

opinion is meant also or instead, it will (also) be recognized, as

shown in the example.

3.7 Link Generation
In the ‘link generation component’ URIs are constructed for the

references found. For case law it uses ECLI, for parliamentary

documents and official gazettes the URIs catered for by the

official repositories. For European references the CELEX number

is used. For national legislative references ‘Juriconnect-BWB’ is

used: a national URI standard for referencing (elements within)

legislation. Juriconnect-BWB uses the identifier of the national

database for consolidated legislation and can be fully resolved by

(at least) that database. It has a strict format for referring to

articles and other elements. It can also contain two dates: one for

the validity and one for the date of viewing (relevant for

retroactive changes). Default the constructed links are without

date of viewing; as the date of validity we take the production date

of the document in which the reference is detected. For specific

pipelines these choices can of course easily be altered.

As follows from this description, all links are basic URIs, no

HTTP-URI’s. Specific resolvers have to be configured by the

applications using the output documents.

4. MAINTENANCE ISSUES
In an experimental or academic setting one can use a limited set of

reference data [4], or extract links for populating a research

database just once [1], without having to worry about typical

maintenance or managerial issues.5 In this paragraph we discuss

three of them: connecting to external sources, changing

identifiers, metadata and citation habits and functional

maintenance.

4.1 Reference Repositories
For proper recognition and resolution we currently use two

internal databases from the Dutch Publications Office and two

external repositories. The internal databases contain the

consolidated legislation, the (currently seven types of) official

gazettes and parliamentary documents. For national case law we

use the open data of the Council for the Judiciary and for

European case law and legislation we use the EUR-Lex

webservice.

5 LawCite is an example of a large-scale link extractor in a

production environment, but although a paper has been written

about it [14], the architecture or managerial issues are not

publicly described.

Anyone using external APIs knows that they all have their own

reliability issues, might change unexpectedly and are often poorly

documented. Strict monitoring is required and creativity needed.

As an example6 might serve the problems to build a proper

reference repositories of EU ECLI’s. On the introduction of ECLI

by the Court of Justice7 in 2014 ECLIs assigned to all decisions

and opinions of the CoJ. They were displayed on the Court’s

website and they were also supplied to the EUR-Lex database.

But while the court continued to display newly assigned ECLIs on

its website, ECLIs assigned after July 2014 are not visible within

EUR-Lex. They have to be harvested from the Court’s website

instead, which is more cumbersome since that website does not

have an API.

4.2 Changing Standards
Another example from the European domain can be used to

demonstrate the impact of the ever ongoing changes in

identification systems and citation rules. The change is futile for

lawyers citing European acts, but it has quite an impact on

software like ours.

On January 1st 2015 the formatting of European legal acts

changed, in two aspects.8 The first issue concerns the change from

parallel to non-parallel serial numbering for different types of

legal acts. Before 2015 directives, regulations and decisions all

had their own sequence numbering: in any given year there could

be a number ‘10’ for all types of acts. From 2015 onwards they all

share the sequence, so in any given year there can only be one act

carrying number ‘10’. This change does not impact xLLx, but the

second one does: the numbering formats have been harmonized.

Previously there were divergent practices for the formatting of the

various types of legal acts.

The identifier of a directive or decision used to be formatted as:

 [type] [year]/[number]/[domain]

 e.g.: Directive 2003/98/EC

For a regulation the proper format used to be:

 [type] ([domain]) No [number]/[year]

 e.g.: Regulation (EEC) No 1408/71

In the new situation all types share the same formatting:

 [type] ([domain]) [year]/[number]

 e.g.: Regulation (EU) 2015/539

Because of the first change the type is not needed anymore to

disambiguate. The domain (e.g. ‘EU’, ‘CFSP’) has never been

needed for this purpose at all. Whether or not they currently have

to be part of a proper citation is not completely clear from the

explanation of the Publications Office:9 in the main rule only the

domain is expressed, but in the examples the type is also

mentioned. In citation practice though we can expect the

continued mentioning of the type, with the domain often left out

of the reference.

Aware of the liberal citation habits of the average lawyer, the

xLLx grammar already took into account the many different

6 At the time of writing (02-04-2015).

7 http://curia.europa.eu/jcms/jcms/P_125997/

8 http://eur-lex.europa.eu/content/tools/elaw/OA0614022END.pdf

9 See footnote 8.

spelling variants for European legal acts. Completely

misformatted references like ‘Dir. 2003-1998’ and ‘EC-

Regulation 1408.71’ are recognized without any problem. [7]

For directives and decisions the changed format was no problem:

the domain was already an optional element in our grammar, its

position could vary and mixing up ‘EEC’, ‘EC’ and ‘EU’ was

taken into account.

Figure 2. Activity diagram for establishing correct CELEX

number for reference to European regulation.

The change in the numbering of regulations though has a more

serious impact, because the year-number sequence changed, it

used to be ‘number/year’, from 2015 onwards it is ‘year/number’.

In our grammar also for regulations the domain is an optional

element, and except for years from the new century, the year

might be written in two or four digits,10 otherwise precision would

10 Although according to the Interinstitutional style guide years up

until 1998 have to be written in two digits, and from (and

including) 1999 in four digits. .

(http://publications.europa.eu/code/en/en-110302.htm)

be too low. As a result ‘Reg. 1408/1971’ will be recognized

properly, as will ‘Regulation EC 93/92’.

Because of the harmonization we had to devise a new grammar

for regulations. This new grammar for 2015 and onwards requires

‘2015’ (or higher) on the first position, but this poses a serious

problem for a citation like ‘Reg. 2015/75’: it can refer to

Regulation 75 from the year 2015 (CELEX:32015R0075), or

regulation 2015 from the year 1975 (CELEX:31975R2015) – and

they actually both do exist.

To improve the correct recognition we became more strict on the

difference in domain between EEC/EC on the one hand and EU

on the other, and introduced additional logic to determine which

variant probably was meant by the author.

Implemented in a co-operation between grammar and logic, the

rule now goes as illustrated in the activity diagram of Figure 2.

A European development we have not been able to implement yet

is the European Legislation Identifier (ELI),11 since it has not yet

been introduced on EUR-Lex. We are eagerly awaiting this

introduction, especially if it caters for granular references to EU

legal acts. Currently, by using the CELEX number, one can only

refer to a legal act as such, not to a specific article within the act.

ELI should make this possible.

Like with national legislation, in xLLx we do recognize article

references in conjunction with the European instruments

themselves, so when EUR-Lex introduces ELI URIs to elements

within acts, we would be fully connected by modifying just one

XSLT stylesheet.

4.3 Functional Maintenance
As might have become apparent already, a link extractor is

maintenance sensitive. Apart from monitoring developments

regarding external resources and standardization efforts as

described in the previous paragraphs, there are also functional

maintenance tasks. Checking and possibly improving the links

found – e.g. to process the ‘resolve manual errors’ – is a task for

end-users, but it’s a responsibility of the system manager to keep

it functioning. This entails of course technical maintenance,

configuring grammars and sometimes pipelines for new document

types, but also editorial work, e.g. to have the exceptions list

(§ 3.2.2) updated.

5. CONCLUSIONS
In this paper we have described the architecture of a legal link

extractor that is flexible, extendable and deployable in a

production environment. The legal domain is very specific and

needs specific solutions, for which we hope to have catered. On

finishing this paper the last bugs were just fixed, and it is not live

yet. However, we expect it to be in production within a couple of

months.

With some specific measures like caching of tries and compiled

grammars, we were able to make the xLLx perform very well. In

the most extended pipeline (recognizing all types of references), a

typical case law document is processed within 2 to 10 seconds on

very moderate hardware, time spent in communicating with

external repositories included.

11 Council conclusions inviting the introduction of the European

Legislation Identifier (CELEX:52012XG1026(01)).

For testing purposes we have randomly selected two judicial

decisions from each of the seven types of courts in the

Netherlands. The results for recall and precision are displayed in

Table 1.

Table 1. Recall and precision of xLLx.

Reference to: R
el

ev
a

n
t

D
et

ec
te

d

F
a

ls
e

p
o

si
ti

v
e

R
ec

a
ll

P
re

ci
si

o
n

National legislation 271 265 10 98% 96%

EU acts 69 64 1 93% 98%

Elements of

(national and EU)

legislation

204 183 0 90% 100%

Case law 151 140 1 93% 99%

Parliamentary

documents

15 13 0 87% 100%

Official journals 9 9 0 100% 100%

Total 719 674 12 94% 98%

Of course there is always room for improvement. Some possible

functional extensions have already been mentioned, and we came

across several other options for more advanced fine-tuning. But as

long as legal writers are not legally obliged to cite properly

and/or they are not supported sufficiently by intelligent authoring

tools, there will always be unresolvable references made. But on

achieving this performance, we hope to have attained our goal of

substantially improving the accessibility of legal documents.

6. REFERENCES

[1] M. van Opijnen, Op en in het web. Hoe de toegankelijkheid

van rechterlijke uitspraken kan worden verbeterd, PhD

University of Amsterdam, 2014.

[2] M. van Opijnen, A Model for Automated Rating of Case

Law, Fourteenth International Conference on Articifial

Intelligence and Law, ACM, New York, 2013, pp. 140-149.

[3] G. Boella and H. Kostantinov, Report on the state-of-the-art

and user needs, EU Cases, 2014. http://eucases.eu/d1_1/

[4] E. de Maat, Making Sense of Legal Texts, PhD University of

Amsterdam, 2012.

[5] S. S. David Nadeau, A survey of named entity recognition

and classification, Lingvisticæ Investigationes 30:1 (2007):

3-26.

[6] A. C. Bellini, The Trie: A Neglected Data Structure,

www.toptal.com/java/the-trie-a-neglected-data-structure.

[7] M. van Opijnen, Searching for References to Secondary EU

Legislation, in S. Tojo, ed., Fourth International Workshop

on Juris-informatics (JURISIN 2010).

[8] M. van Opijnen, Canonicalizing Complex Case Law

Citations, in R. Winkels, ed., Legal Knowledge and

Information Systems - JURIX 2010: The Twenty-Third

Annual Conference, IOS Press, Amsterdam, 2010, pp. 97-

106.

[9] L. Bacci, E. Francesconi and M. Teresa, A Proposal for

Introducing the ECLI Standard in the Italian Judicial

Documentary System, Legal Knowledge and Information

Systems - JURIX 2013: The Twenty-Sixth Annual

Conference, IOS Press, 2013, pp. 49-58.

[10] R. Winkels, J. de Ruyter and H. Kroese, Determining

Authority of Dutch Case Law, in K. M. Atkinson, ed., Legal

Knowledge and Information Systems. JURIX 2011: The

Twenty-Fourth International Conference., IOS Press,

Amsterdam, 2011, pp. 103-112.

[11] R. Ierusalimschy, A Text Pattern-Matching Tool based on

Parsing Expression Grammars, Software: Practice and

Experience 2008).

[12] B. Ford, Parsing Expression Grammars: A Recognition-

Based Syntactic Foundation, Proceedings of the 31st ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, ACM, New York, 2004, pp. 111-

122.

[13] M. van Opijnen, European Case Law Identifier:

indispensable asset for legal information retrieval, in M. A.

Biasiotti and S. Faro, eds., From Information to Knowledge.

Online Access to Legal Information: Methodologies, Trends

and Perspectives, IOS Press, Amsterdam, 2011, pp. 91-104.

[14] A. Mowbray, P. Chung and G. Greenleaf, Free-access Case

Law Enhancements for Australian Law, in G. Peruginelli and

M. Ragona, eds., Law via the Internet. Free Access, Quality

of Information, Effectiveness of Rights, European Press

Academic Publishing, Florence, 2009, pp. 285-298.

This work is part of the 2015 Workshop on Automated Detection,

Extraction and Analysis of Semantic Information in Legal Texts, held in

conjunction with the 2015 International Conference on Artificial

Intelligence and Law (ICAIL), June 08 - 12, 2015, San Diego, CA,

USA.

Copyright is held by the owner/author(s).

